On p -adic analytic families of Galois representations

B. Mazur; A. Wiles

Compositio Mathematica (1986)

  • Volume: 59, Issue: 2, page 231-264
  • ISSN: 0010-437X

How to cite

top

Mazur, B., and Wiles, A.. "On $p$-adic analytic families of Galois representations." Compositio Mathematica 59.2 (1986): 231-264. <http://eudml.org/doc/89788>.

@article{Mazur1986,
author = {Mazur, B., Wiles, A.},
journal = {Compositio Mathematica},
keywords = {continuous Galois representations; cuspidal newforms; Jacobians; modular curves; Tate-modules; Hecke algebra; p-adic Hodge theory},
language = {eng},
number = {2},
pages = {231-264},
publisher = {Martinus Nijhoff Publishers},
title = {On $p$-adic analytic families of Galois representations},
url = {http://eudml.org/doc/89788},
volume = {59},
year = {1986},
}

TY - JOUR
AU - Mazur, B.
AU - Wiles, A.
TI - On $p$-adic analytic families of Galois representations
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 59
IS - 2
SP - 231
EP - 264
LA - eng
KW - continuous Galois representations; cuspidal newforms; Jacobians; modular curves; Tate-modules; Hecke algebra; p-adic Hodge theory
UR - http://eudml.org/doc/89788
ER -

References

top
  1. [At] O., Atkin: Congruences for modular forms. Proceedings of the IBM Conference on Computers in Mathematical Research, Blaricium, 1966. North-Holland (1968) 8-19. Zbl0186.36302MR240053
  2. [C-R] C. Curtis and I. Reiner: Representation theory of finite groups and associative algebras. Interscience, New York (1962). Zbl0131.25601MR144979
  3. [D-S] P. Deligne and J.-P. Serre: Formes modulaires de poids 1. Ann. Sci. Ecole Norm. Sup.7 (1974) 507-730. Zbl0321.10026MR379379
  4. [Fa] G. Faltings: Report on Hodge-Tate-Structures. (preprint. Princeton U. 1985). 
  5. [Gr] A. Grothendieck: Groupes de Monodromie en Géométrie Algébrique. Lecture Notes in Mathematics, 288. Springer-Verlag, Berlin- Heidelberg-New York (1972). Zbl0237.00013MR354656
  6. [Har] R. Hartshorne: Residues and Duality. Lecture Notes in Mathematics, 20Springer-Verlag, Berlin-Heidelberg-New York (1966). Zbl0212.26101MR222093
  7. [Hi 1] H. Hida: Iwasawa modules attached to congruences of cusp forms. To appear in Ann. Sci. E.N.S. Zbl0607.10022MR868300
  8. [Hi 2] H. Hida: Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms (preprint). Zbl0612.10021
  9. [Ka] N. Katz: P-adic properties of modular schemes and modular forms. Modular Functions of One Variable III. Lecture Notes in Mathematics, 350. Springer Verlag, Berlin-Heidelberg-New York (1973) 69-141. Zbl0271.10033MR447119
  10. [K-M] N. Katz and B. Mazur: Arithmetic moduli of elliptic curves. Annals of Math. Studies, 108. Princeton Univ. Press (1985). Zbl0576.14026MR772569
  11. [Li] W. Li: Newforms and functional equations. Math. Ann.212 (1975) 285-315. Zbl0278.10026MR369263
  12. [M1] B. Mazur: Isogenies of prime degree. Inv. Math.44 (1978) 129-162. Zbl0386.14009MR482230
  13. [M2] B. Mazur: Modular curves and the Eisenstein ideal. Publ. Math. IHES47 (1978) 33-186. Zbl0394.14008MR488287
  14. [M-W 1] B. Mazur and A. Wiles: Classfields of abelian extensions of Q. Inv. Math.76 (1984) 179-330. Zbl0545.12005MR742853
  15. [M-W 2] B. Mazur and A. Wiles: Analogies between function fields and number fields. Amer. J. Math.105 (1983) 507-521. Zbl0531.12015MR701567
  16. [Od] A. Odlyzko: On conductors and discriminants. 
  17. [O] A. Ogg: On the eigenvalues of Hecke operators. Math. Ann.179 (1969) 101-108. Zbl0169.10102MR269597
  18. [Sch] I. Schur: Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen, Sitzungsberichte Preuss. Ak. der Wiss. (1906) pp. 164-184. In: Gesammelte Abhandlungen I. Springer-Verlag, Berlin-Heidelberg -New York (1973) 177-197. JFM37.0160.01
  19. [Sen] S. Sen: Continuous cohomology and p-adic Galois representations. Inv. Math.62 (1981) 89-116. Zbl0463.12005MR595584
  20. [Serre 1] J.-P. Serre: Représentations l-adiques. Kyoto Int. Symp. on Algebraic Number Theory (1977) 177-193. Zbl0406.14015MR476753
  21. [Serre 2] J.-P. Serre: Congruences et formes modulaires [d'après H.P.F. Swinnerton-Dyer] Sém. Bourbaki exp. 416. Lecture Notes in Mathematics 317. Springer-Verlag, Berlin-Heidelberg -New York (1973) 319-338. Zbl0276.14013MR466020
  22. [Serre 3] J.-P. Serre: Linear representations of finite groups. Springer-Verlag, New York-Heidelberg -Berlin (1977). Zbl0355.20006MR450380
  23. [S-T] J.-P. Serre and J. Tate: Good reduction of abelian varieties, Ann. of Math.88 (1968) 492-517. Zbl0172.46101MR236190
  24. [SwD] H.P.F. Swinnerton-Dyer: On l-adic representations and congruences for coefficients of modular forms. Modular Functions of One Variable III. Lecture Notes in Mathematics, 350. Springer-Verlag, Berlin-Heidelberg - New York (1973) 1-56. Zbl0267.10032MR406931
  25. [Ta] J. Tate: p-divisible groups. Proceedings of a conference on local fields (Driebergen1966). Berlin-Heidelberg-New York, Springer-Verlag (1967) 158-183. Zbl0157.27601MR231827
  26. [W] A. Wiles: Modular curves and the class group of Q(ζp). Inv. Math.58 (1980) 1-35. Zbl0436.12004
  27. [1] J. Rose: A Course on Group Theory. Cambridge Univ. Press, London/New York (1978). Zbl0371.20001MR498810
  28. [2] W. Klingenberg: Lineare Gruppen über lokalen Ringen, Amer. J. Math.83 (1961) 137-153. Zbl0098.02303MR124412
  29. [3] B.R. McDonald: Geometric Algebra over Local Rings. Marcel Dekker Inc., New York and Basel (1976). Zbl0346.20027MR476639

Citations in EuDML Documents

top
  1. Shankar Sen, An infinite dimensional Hodge-Tate theory
  2. Karsten Buecker, Congruences between Siegel modular forms on the level of group cohomology
  3. Ami Fischman, On the image of Λ -adic Galois representations
  4. Robert F. Coleman, Classical and overconvergent modular forms of higher level
  5. Eknath Ghate, Vinayak Vatsal, On the local behaviour of ordinary Λ -adic representations
  6. B. Mazur, Two-dimensional p -adic Galois representations unramified away from p
  7. Ehud De Shalit, On certain Galois representations related to the modular curve X 1 ( p )
  8. Masami Ohta, Congruence modules related to Eisenstein series
  9. Assaf Goldberger, Ehud de Shalit, Tamely ramified Hida theory
  10. Barry Mazur, Jacques Tilouine, Représentations galoisiennes, différentielles de Kähler et «conjectures principales»

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.