Iwasawa modules attached to congruences of cusp forms
Annales scientifiques de l'École Normale Supérieure (1986)
- Volume: 19, Issue: 2, page 231-273
- ISSN: 0012-9593
Access Full Article
topHow to cite
topHida, Haruzo. "Iwasawa modules attached to congruences of cusp forms." Annales scientifiques de l'École Normale Supérieure 19.2 (1986): 231-273. <http://eudml.org/doc/82176>.
@article{Hida1986,
author = {Hida, Haruzo},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {congruences; cusp forms; -adic modular forms; Hecke algebra; Iwasawa algebra},
language = {eng},
number = {2},
pages = {231-273},
publisher = {Elsevier},
title = {Iwasawa modules attached to congruences of cusp forms},
url = {http://eudml.org/doc/82176},
volume = {19},
year = {1986},
}
TY - JOUR
AU - Hida, Haruzo
TI - Iwasawa modules attached to congruences of cusp forms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 2
SP - 231
EP - 273
LA - eng
KW - congruences; cusp forms; -adic modular forms; Hecke algebra; Iwasawa algebra
UR - http://eudml.org/doc/82176
ER -
References
top- [1] N. BOURBAKI, Commutative algebra, Hermann, Paris, 1972. MR360549
- [2] L. CARLITZ, Arithmetic properties of generalized Bernoulli numbers (J. reine angew. Math., Vol. 202, 1959, pp. 174-182). Zbl0125.02202MR109132
- [3] P. DELIGNE and M. RAPOPORT, Les schémas de modules des courbes elliptiques, in : Modular functions of one variable, II (Lecture notes in Math., Vol. 349, pp. 143-174, Springer, 1973). Zbl0281.14010MR337993
- [4] K. DOI and T. MIYAKE, Automorphic forms and number theory (in Japanese), Kinokuniya Shoten, Tokyo, 1976. Zbl0466.10012
- [5] E. HECKE, Zur Theorie der elliptischen module Funktionen (Math. Ann., Vol. 97, 1926, pp. 210-242 (= Werke No. 23)). Zbl52.0377.04JFM52.0377.04
- [6] E. HECKE, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik (Abh. Math. Sem. Hamburg, Vol. 5, 1927, pp. 199-224 (= Werke No. 24)). Zbl53.0345.02JFM53.0345.02
- [7] H. HIDA, Congruences of cusp forms and special values of their zeta functions (Inventiones Math., Vol. 63, 1981, pp. 225-261). Zbl0459.10018MR610538
- [8] H. HIDA, On congruence divisors of cusp forms as factors of the special values of their zeta functions (Inventiones Math., Vol. 64, 1981, pp. 221-262). Zbl0472.10028MR629471
- [9] H. HIDA, Kummer's criterion for the special values of Hecke L-functions of imaginary quadratic fields and congruences among cusp forms (Inventiones Math., Vol. 66, 1982, pp. 415-459). Zbl0485.10019MR662601
- [10] H. HIDA, A p-adic measure attached to the zeta functions associated with two elliptic modular forms, I (Inventiones Math., Vol. 79, 1985, pp. 159-195). Zbl0573.10020MR774534
- [11] H. HIDA, Galois representations into GL2 (Zp[[X]]) attached to ordinary cusp forms, to appear in Inventiones Math. Zbl0612.10021MR848685
- [12] K. IWASAWA, On Γ-extensions of algebraic number fields, Bull. (Amer. Math. Soc., Vol. 65, 1959, pp. 183-226). Zbl0089.02402MR124316
- [13] N. JOCHNOWITZ, Congruences between systems of eigenvalues of modular forms (Trans. Amer. Math. Soc., Vol. 270, 1982, pp. 269-285). Zbl0536.10022MR642341
- [14] N. M. KATZ, p-adic properties of modular schemes and modular forms, in : Modular functions of one variable, III (Lecture notes in Math., Vol. 350, 1973, pp. 69-190). Zbl0271.10033MR447119
- [15] N. M. KATZ, p-adic L-functions via moduli of elliptic curves (Proc. Symp. Pure Math., Vol. 29, 1975, pp. 479-506). Zbl0317.14009MR432649
- [16] N. M. KATZ, Higher congruences between modular forms (Ann. of Math., Vol. 101, 1975, pp. 332-367). Zbl0356.10020MR417059
- [17] N. M. KATZ, The Eisenstein measure and p-adic interpolation (Amer. J. Math., Vol. 99, 1977, pp. 238-311). Zbl0375.12022MR485797
- [18] N. M. KATZ, p-adic interpolation of real analytic Eisenstein series (Ann. of Math., Vol. 104, 1976, pp. 459-571). Zbl0354.14007MR506271
- [19] S. LANG, Introduction to modular forms, Grundlehren der Math. Wiss., Vol. 222, Springer, 1976. Zbl0344.10011MR429740
- [20] S. LANG, Cyclotomic fields, Grad. Texts in Math., Vol. 59, Springer, 1978. Zbl0395.12005MR485768
- [21] K. MAHLER, p-adic numbers and their functions, Cambridge Univ. Press, Cambridge, 1981. Zbl0444.12013MR644483
- [22] B. MAZUR, Modular curves and the Eisenstein ideal (Publ. Math. I.H.E.S., Vol. 47, 1977, pp. 33-186). Zbl0394.14008MR488287
- [23] T. MIYAKE, On automorphic forms on GL2 and Hecke operators (Ann. of Math., Vol. 94, 1971, pp. 174-189). Zbl0204.54201MR299559
- [24] K. A. RIBET, Mod p Hecke operators and congruences between modular forms (Inventiones Math., Vol. 71, 1983, p. 193-205). Zbl0508.10018MR688264
- [25] J.-P. SERRE, Classes des corps cyclotomiques, d'après Iwasawa, Séminaire Bourbaki, 1958. Zbl0119.27603
- [26] G. SHIMURA, On elliptic curves with complex multiplication as factors of the jacobians of modular function fields (Nagoya Math. J., Vol. 43, 1971, pp. 199-208). Zbl0225.14015MR296050
- [27] G. SHIMURA, On the Fourier coefficients of modular forms of several variables (Göttingen Nachr. Akad. Wiss., 1975, pp. 261-268). Zbl0332.32024MR485706
- [28] G. SHIMURA, The periods of certain automorphic forms of arithmetic type (J. Fac. Sci. Univ. Tokyo, Sec. IA, Vol. 28, 1982, pp. 605-632). Zbl0499.10027MR656039
- [29] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten and Princeton Univ. Press, 1971. Zbl0221.10029
- [30] A. WEIL, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1958.
- [31] H. HIDA, Congruences of cusp forms and Hecke algebras, Séminaire de Théorie des Nombres, Paris, 1983-1984, Progress in Math. No 59, pp. 133-146. Zbl0575.10025MR902830
Citations in EuDML Documents
top- Vincent Pilloni, Overconvergent modular forms
- Ami Fischman, On the image of -adic Galois representations
- Vincent Pilloni, Sur la théorie de Hida pour le groupe
- Jacques Tilouine, Théorie d'Iwasawa de l'algèbre de Hecke ordinaire et théorie d'Iwasawa classique
- Eknath Ghate, Vinayak Vatsal, On the local behaviour of ordinary -adic representations
- B. Mazur, Two-dimensional -adic Galois representations unramified away from
- Robert F. Coleman, Classical and overconvergent modular forms
- Fred Diamond, On congruence modules associated to -adic forms
- Masami Ohta, Congruence modules related to Eisenstein series
- Trevor Arnold, Hida families, -adic heights, and derivatives
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.