On the pythagoras numbers of real analytic surfaces

Francesca Acquistapace; Fabrizio Broglia; José F. Fernando; Jesús M. Ruiz

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 5, page 751-772
  • ISSN: 0012-9593

How to cite

top

Acquistapace, Francesca, et al. "On the pythagoras numbers of real analytic surfaces." Annales scientifiques de l'École Normale Supérieure 38.5 (2005): 751-772. <http://eudml.org/doc/82673>.

@article{Acquistapace2005,
author = {Acquistapace, Francesca, Broglia, Fabrizio, Fernando, José F., Ruiz, Jesús M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Pythagoras number; analytic function; analytic function germ; meromorphic function; meromorphic function germ},
language = {eng},
number = {5},
pages = {751-772},
publisher = {Elsevier},
title = {On the pythagoras numbers of real analytic surfaces},
url = {http://eudml.org/doc/82673},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Acquistapace, Francesca
AU - Broglia, Fabrizio
AU - Fernando, José F.
AU - Ruiz, Jesús M.
TI - On the pythagoras numbers of real analytic surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 5
SP - 751
EP - 772
LA - eng
KW - Pythagoras number; analytic function; analytic function germ; meromorphic function; meromorphic function germ
UR - http://eudml.org/doc/82673
ER -

References

top
  1. [1] Acquistapace F., Broglia F., Fernando J.F., Ruiz J.M., On the 17th Hilbert Problem for global analytic functions, Preprint RAAG 2004. 
  2. [2] Andradas C., Díaz-Cano A., Ruiz J.M., The Artin–Lang property for normal real analytic surfaces, J. reine angew. Math.556 (2003) 99-111. Zbl1037.32010MR1971140
  3. [3] Bochnak J., Coste M., Roy M.F., Real Algebraic Geometry, Ergeb. Math. Grenzgeb., vol. 36, Springer, Berlin, 1998. Zbl0912.14023MR1659509
  4. [4] Cartan H., Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France85 (1957) 77-99. Zbl0083.30502MR94830
  5. [5] Choi M.D., Dai Z.D., Lam T.Y., Reznick B., The Pythagoras number of some affine algebras and local algebras, J. reine angew. Math.336 (1982) 45-82. Zbl0499.12018MR671321
  6. [6] Coen S., Sul rango dei fasci coerenti, Boll. Univ. Mat. Ital.22 (1967) 373-383. Zbl0164.38202MR227467
  7. [7] Greenberg M.J., Lectures on Forms in Many Variables, W.A. Benjamin, New York, 1969. Zbl0185.08304MR241358
  8. [8] Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, NJ, 1965. Zbl0141.08601MR180696
  9. [9] Jaworski P., Positive definite analytic functions and vector bundles, Bull. Acad. Pol. Sci.30 (1982) 501-506. Zbl0554.32006MR718726
  10. [10] Jaworski P., About estimates on number of squares necessary to represent a positive-semidefinite analytic function, Arch. Math.58 (1992) 276-279. Zbl0723.14043MR1148203
  11. [11] de Jong T., Pfister G., Local Analytic Geometry, Basic Theory and Applications, Advanced Lectures in Mathematics, Vieweg, Braunschweig, 2000. Zbl0959.32011MR1760953
  12. [12] Lam T.Y., The Algebraic Theory of Quadratic Forms, Mathematics Lecture Notes Series, W.A. Benjamin, Massachusetts, 1973. Zbl0259.10019MR396410
  13. [13] Mahé L., Level and Pythagoras number of some geometric rings, Math. Z.204 (4) (1990) 615-629. Zbl0773.11024MR1062139
  14. [14] Mahé L., Théorème de Pfister pour les variétés et anneaux de Witt réduits, Invent. Math.85 (1) (1986) 53-72. Zbl0601.14019MR842048
  15. [15] Narasimhan R., Introduction to the Theory of Analytic Spaces, Lecture Notes in Math., vol. 25, Springer, Berlin, 1966. Zbl0168.06003MR217337
  16. [16] Pfister A., Quadratic Forms with Applications to Algebraic Geometry and Topology, London Math. Soc. Lecture Note Ser., vol. 217, Cambridge University Press, Cambridge, 1995. Zbl0847.11014MR1366652
  17. [17] Prestel A., Delzell C.N., Positive Polynomials, Monographs in Mathematics, Springer, Berlin, 2001. Zbl0987.13016MR1829790
  18. [18] Ruiz J.M., The Basic Theory of Power Series, Advanced Lectures in Mathematics, Vieweg, Braunschweig, 1993. MR1234937
  19. [19] Tougeron J.-C., Idéaux de fonctions différentiables, Ergeb. Math. Grenzgeb., vol. 71, Springer, Berlin, 1972. Zbl0251.58001MR440598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.