Existence of unique SRB-measures is typical for real unicritical polynomial families

Henk Bruin; Weixiao Shen; Sebastian Van Strien

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 3, page 381-414
  • ISSN: 0012-9593

How to cite

top

Bruin, Henk, Shen, Weixiao, and Van Strien, Sebastian. "Existence of unique SRB-measures is typical for real unicritical polynomial families." Annales scientifiques de l'École Normale Supérieure 39.3 (2006): 381-414. <http://eudml.org/doc/82689>.

@article{Bruin2006,
author = {Bruin, Henk, Shen, Weixiao, Van Strien, Sebastian},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {families of real unicritical polynomial maps; SRB-measures; metric attractors; uniquely ergodic dynamical systems; Cantor attractor},
language = {eng},
number = {3},
pages = {381-414},
publisher = {Elsevier},
title = {Existence of unique SRB-measures is typical for real unicritical polynomial families},
url = {http://eudml.org/doc/82689},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Bruin, Henk
AU - Shen, Weixiao
AU - Van Strien, Sebastian
TI - Existence of unique SRB-measures is typical for real unicritical polynomial families
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 3
SP - 381
EP - 414
LA - eng
KW - families of real unicritical polynomial maps; SRB-measures; metric attractors; uniquely ergodic dynamical systems; Cantor attractor
UR - http://eudml.org/doc/82689
ER -

References

top
  1. [1] Ahlfors L., Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966. Zbl0138.06002MR200442
  2. [2] Avila A., Lyubich M., de Melo W., Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math.154 (2003) 451-550. Zbl1050.37018MR2018784
  3. [3] Avila A., Moreira C.G., Statistical properties of unimodal maps: The quadratic family, Ann. of Math.161 (2005) 831-881. Zbl1078.37029MR2153401
  4. [4] Birkhoff G., Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc.85 (1957) 219-227. Zbl0079.13502MR87058
  5. [5] Blokh A., Lyubich M., Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup.24 (1991) 737-749. Zbl0790.58024MR1132757
  6. [6] Bruin H., Minimal Cantor systems and unimodal maps, J. Difference Eq. Appl.9 (2003) 305-318. Zbl1026.37003MR1990338
  7. [7] Bruin H., Topological conditions for the existence of Cantor attractors, Trans. Amer. Math. Soc.350 (1998) 2229-2263. Zbl0901.58029MR1458316
  8. [8] Bruin H., Luzzatto S., van Strien S., Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup.36 (2003) 621-646. Zbl1039.37021MR2013929
  9. [9] Bruin H., Keller G., Nowicki T., van Strien S., Wild Cantor attractors exist, Ann. of Math.143 (1996) 97-130. Zbl0848.58016MR1370759
  10. [10] Bruin H., Shen W., van Strien S., Invariant measures exist without a growth condition, Commun. Math. Phys.241 (2–3) (2003) 287-306. Zbl1098.37034MR2013801
  11. [11] Douady A., Hubbard J., Dynamical study of complex polynomials, Part I and Part II, Mathematical Publications of Orsay 84-2, 85-4 (in French). 
  12. [12] Douady A., Hubbard J., On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4)18 (2) (1985) 287-343. Zbl0587.30028MR816367
  13. [13] Durand F., Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Syst.20 (2000) 1061-1078. Zbl0965.37013MR1779393
  14. [14] Graczyk J., Świa̧tek G., Induced expansion for quadratic polynomials, Ann. Sci École Norm. Súp.29 (1996) 399-482. Zbl0867.58048
  15. [15] Hasselblatt B., Katok A., A First Course in Dynamics, with a Panorama of Recent Developments, Cambridge University Press, Cambridge, 2003. Zbl1027.37001MR1995704
  16. [16] Hofbauer F., Keller G., Some remarks on recent results about S-unimodal maps, Ann. Inst. Henri Poincaré53 (1990) 413-425. Zbl0721.58018MR1096100
  17. [17] Kahn J., Holomorphic removability of Julia sets, IMS preprint ims98-11. 
  18. [18] Kozlovski O., Getting rid of the negative Schwarzian derivative condition, Ann. of Math.152 (2000) 743-762. Zbl0988.37044MR1815700
  19. [19] Kozlovski O., Shen W., van Strien S., Rigidity for real polynomials, Ann. of Math., in press. Zbl1129.37020
  20. [20] Kozlovski O., Shen W., van Strien S., Density of Axiom A in dimension one, Ann. of Math., in press. Zbl1138.37013
  21. [21] Lyubich M., Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math.140 (1994) 347-404, and Erratum Manuscript (2000). Zbl0821.58014MR1298717
  22. [22] Lyubich M., Dynamics of quadratic polynomials. III. Parapuzzle and SRB measures, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. xii-xiii, 173–200. Zbl1044.37038MR1755441
  23. [23] Lyubich M., Feigenbaum–Coullet–Tresser universality and Milnor's hairiness conjecture, Ann. of Math.149 (2) (1999) 319-420. Zbl0945.37012MR1689333
  24. [24] Lyubich M., Almost every real quadratic map is either regular or stochastic, Ann. of Math.156 (2002) 1-78. Zbl1160.37356MR1935840
  25. [25] McMullen C., Complex Dynamics and Renormalization, Ann. of Math Stud., vol. 135, 1994. Zbl0822.30002MR1312365
  26. [26] Mañé R., Ergodic Theory and Differentiable Dynamics, Springer, New York, 1987. Zbl0616.28007MR889254
  27. [27] Martens M., Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Syst.14 (2) (1994) 331-349. Zbl0809.58026MR1279474
  28. [28] Martens M., Nowicki T., Invariant measures for typical quadratic maps, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. 239-252. Zbl0939.37020MR1755443
  29. [29] de Melo W., van Strien S., One-Dimensional Dynamics, Springer, Berlin, 1993. Zbl0791.58003MR1239171
  30. [30] Milnor J., Periodic orbits, externals rays and the Mandelbrot set: An expository account, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. xiii, 277–333. Zbl0941.30016MR1755445
  31. [31] Nowicki T., van Strien S., Invariant measures exist under a summability condition, Invent. Math.105 (1991) 123-136. Zbl0736.58030MR1109621
  32. [32] Rivera-Letelier J., Rational maps with decay of geometry: Rigidity, Thurston's algorithm and local connectivity, IMS preprint ims00-09. 
  33. [33] Roesch P., Holomorphic motions and puzzles (following M. Shishikura), in: The Mandelbrot set theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge University Press, Cambridge, 2000, pp. 117-131. Zbl1063.37042MR1765086
  34. [34] Shen W., Bounds for one-dimensional maps without inflection critical points, J. Math. Sci. Univ. Tokyo10 (1) (2003) 41-88. Zbl1184.37035MR1963798
  35. [35] Shen W., Decay geometry for unimodal maps: an elementary proof, Ann. of Math. (2)163 (2) (2006) 383-404. Zbl1097.37032MR2199221
  36. [36] Shishikura M., Yoccoz puzzles, τ-functions and their applications, Unpublished. 
  37. [37] Slodkowski Z., Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc.111 (2) (1991) 347-355. Zbl0741.32009MR1037218
  38. [38] van Strien S., Vargas E., Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc.17 (2004) 749-782. Zbl1073.37043MR2083467
  39. [39] Yoccoz J.-C., Unpublished. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.