Existence of unique SRB-measures is typical for real unicritical polynomial families
Henk Bruin; Weixiao Shen; Sebastian Van Strien
Annales scientifiques de l'École Normale Supérieure (2006)
- Volume: 39, Issue: 3, page 381-414
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBruin, Henk, Shen, Weixiao, and Van Strien, Sebastian. "Existence of unique SRB-measures is typical for real unicritical polynomial families." Annales scientifiques de l'École Normale Supérieure 39.3 (2006): 381-414. <http://eudml.org/doc/82689>.
@article{Bruin2006,
author = {Bruin, Henk, Shen, Weixiao, Van Strien, Sebastian},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {families of real unicritical polynomial maps; SRB-measures; metric attractors; uniquely ergodic dynamical systems; Cantor attractor},
language = {eng},
number = {3},
pages = {381-414},
publisher = {Elsevier},
title = {Existence of unique SRB-measures is typical for real unicritical polynomial families},
url = {http://eudml.org/doc/82689},
volume = {39},
year = {2006},
}
TY - JOUR
AU - Bruin, Henk
AU - Shen, Weixiao
AU - Van Strien, Sebastian
TI - Existence of unique SRB-measures is typical for real unicritical polynomial families
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 3
SP - 381
EP - 414
LA - eng
KW - families of real unicritical polynomial maps; SRB-measures; metric attractors; uniquely ergodic dynamical systems; Cantor attractor
UR - http://eudml.org/doc/82689
ER -
References
top- [1] Ahlfors L., Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966. Zbl0138.06002MR200442
- [2] Avila A., Lyubich M., de Melo W., Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math.154 (2003) 451-550. Zbl1050.37018MR2018784
- [3] Avila A., Moreira C.G., Statistical properties of unimodal maps: The quadratic family, Ann. of Math.161 (2005) 831-881. Zbl1078.37029MR2153401
- [4] Birkhoff G., Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc.85 (1957) 219-227. Zbl0079.13502MR87058
- [5] Blokh A., Lyubich M., Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup.24 (1991) 737-749. Zbl0790.58024MR1132757
- [6] Bruin H., Minimal Cantor systems and unimodal maps, J. Difference Eq. Appl.9 (2003) 305-318. Zbl1026.37003MR1990338
- [7] Bruin H., Topological conditions for the existence of Cantor attractors, Trans. Amer. Math. Soc.350 (1998) 2229-2263. Zbl0901.58029MR1458316
- [8] Bruin H., Luzzatto S., van Strien S., Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup.36 (2003) 621-646. Zbl1039.37021MR2013929
- [9] Bruin H., Keller G., Nowicki T., van Strien S., Wild Cantor attractors exist, Ann. of Math.143 (1996) 97-130. Zbl0848.58016MR1370759
- [10] Bruin H., Shen W., van Strien S., Invariant measures exist without a growth condition, Commun. Math. Phys.241 (2–3) (2003) 287-306. Zbl1098.37034MR2013801
- [11] Douady A., Hubbard J., Dynamical study of complex polynomials, Part I and Part II, Mathematical Publications of Orsay 84-2, 85-4 (in French).
- [12] Douady A., Hubbard J., On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4)18 (2) (1985) 287-343. Zbl0587.30028MR816367
- [13] Durand F., Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Syst.20 (2000) 1061-1078. Zbl0965.37013MR1779393
- [14] Graczyk J., Świa̧tek G., Induced expansion for quadratic polynomials, Ann. Sci École Norm. Súp.29 (1996) 399-482. Zbl0867.58048
- [15] Hasselblatt B., Katok A., A First Course in Dynamics, with a Panorama of Recent Developments, Cambridge University Press, Cambridge, 2003. Zbl1027.37001MR1995704
- [16] Hofbauer F., Keller G., Some remarks on recent results about S-unimodal maps, Ann. Inst. Henri Poincaré53 (1990) 413-425. Zbl0721.58018MR1096100
- [17] Kahn J., Holomorphic removability of Julia sets, IMS preprint ims98-11.
- [18] Kozlovski O., Getting rid of the negative Schwarzian derivative condition, Ann. of Math.152 (2000) 743-762. Zbl0988.37044MR1815700
- [19] Kozlovski O., Shen W., van Strien S., Rigidity for real polynomials, Ann. of Math., in press. Zbl1129.37020
- [20] Kozlovski O., Shen W., van Strien S., Density of Axiom A in dimension one, Ann. of Math., in press. Zbl1138.37013
- [21] Lyubich M., Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math.140 (1994) 347-404, and Erratum Manuscript (2000). Zbl0821.58014MR1298717
- [22] Lyubich M., Dynamics of quadratic polynomials. III. Parapuzzle and SRB measures, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. xii-xiii, 173–200. Zbl1044.37038MR1755441
- [23] Lyubich M., Feigenbaum–Coullet–Tresser universality and Milnor's hairiness conjecture, Ann. of Math.149 (2) (1999) 319-420. Zbl0945.37012MR1689333
- [24] Lyubich M., Almost every real quadratic map is either regular or stochastic, Ann. of Math.156 (2002) 1-78. Zbl1160.37356MR1935840
- [25] McMullen C., Complex Dynamics and Renormalization, Ann. of Math Stud., vol. 135, 1994. Zbl0822.30002MR1312365
- [26] Mañé R., Ergodic Theory and Differentiable Dynamics, Springer, New York, 1987. Zbl0616.28007MR889254
- [27] Martens M., Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Syst.14 (2) (1994) 331-349. Zbl0809.58026MR1279474
- [28] Martens M., Nowicki T., Invariant measures for typical quadratic maps, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. 239-252. Zbl0939.37020MR1755443
- [29] de Melo W., van Strien S., One-Dimensional Dynamics, Springer, Berlin, 1993. Zbl0791.58003MR1239171
- [30] Milnor J., Periodic orbits, externals rays and the Mandelbrot set: An expository account, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. xiii, 277–333. Zbl0941.30016MR1755445
- [31] Nowicki T., van Strien S., Invariant measures exist under a summability condition, Invent. Math.105 (1991) 123-136. Zbl0736.58030MR1109621
- [32] Rivera-Letelier J., Rational maps with decay of geometry: Rigidity, Thurston's algorithm and local connectivity, IMS preprint ims00-09.
- [33] Roesch P., Holomorphic motions and puzzles (following M. Shishikura), in: The Mandelbrot set theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge University Press, Cambridge, 2000, pp. 117-131. Zbl1063.37042MR1765086
- [34] Shen W., Bounds for one-dimensional maps without inflection critical points, J. Math. Sci. Univ. Tokyo10 (1) (2003) 41-88. Zbl1184.37035MR1963798
- [35] Shen W., Decay geometry for unimodal maps: an elementary proof, Ann. of Math. (2)163 (2) (2006) 383-404. Zbl1097.37032MR2199221
- [36] Shishikura M., Yoccoz puzzles, τ-functions and their applications, Unpublished.
- [37] Slodkowski Z., Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc.111 (2) (1991) 347-355. Zbl0741.32009MR1037218
- [38] van Strien S., Vargas E., Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc.17 (2004) 749-782. Zbl1073.37043MR2083467
- [39] Yoccoz J.-C., Unpublished.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.