On a fully nonlinear Yamabe problem

Yuxin Ge; Guofang Wang

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 4, page 569-598
  • ISSN: 0012-9593

How to cite

top

Ge, Yuxin, and Wang, Guofang. "On a fully nonlinear Yamabe problem." Annales scientifiques de l'École Normale Supérieure 39.4 (2006): 569-598. <http://eudml.org/doc/82695>.

@article{Ge2006,
author = {Ge, Yuxin, Wang, Guofang},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Schouten tensor; conformal metrics; -Yamabe problem; fully nonlinear elliptic equation},
language = {eng},
number = {4},
pages = {569-598},
publisher = {Elsevier},
title = {On a fully nonlinear Yamabe problem},
url = {http://eudml.org/doc/82695},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Ge, Yuxin
AU - Wang, Guofang
TI - On a fully nonlinear Yamabe problem
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 4
SP - 569
EP - 598
LA - eng
KW - Schouten tensor; conformal metrics; -Yamabe problem; fully nonlinear elliptic equation
UR - http://eudml.org/doc/82695
ER -

References

top
  1. [1] Andrews B., Monotone quantities and unique limits for evolving convex hypersurfaces, Internat. Math. Res. Notices1997 (1997) 1001-1031. Zbl0892.53002MR1486693
  2. [2] Aubin T., Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl.55 (1976) 269-296. Zbl0336.53033MR431287
  3. [3] Aubin T., Li Y., On the best Sobolev inequality, J. Math. Pures Appl.78 (1999) 353-387. Zbl0944.46027MR1696357
  4. [4] Brendle S., Viaclovsky J., A variational characterization for σ n / 2 , Calc. Var. Partial Differential Equations20 (2004) 399-402. Zbl1059.53033MR2071927
  5. [5] Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math.155 (1985) 261-301. Zbl0654.35031MR806416
  6. [6] Chang A., Gursky M., Yang P., An equation of Monge–Ampère type in conformal geometry, and four manifolds of positive Ricci curvature, Ann. of Math.155 (2002) 709-787. Zbl1031.53062MR1923964
  7. [7] Chang A., Gursky M., Yang P., An a priori estimate for a fully nonlinear equation on Four-manifolds, J. Anal. Math.87 (2002) 151-186. Zbl1067.58028MR1945280
  8. [8] Chang A., Gursky M., Yang P., Entire solutions of a fully nonlinear equation, in: Lectures on Partial Differential Equations, New Stud. Adv. Math., vol. 2, Int. Press, Somerville, MA, 2003, pp. 43-60. Zbl1183.53035MR2055838
  9. [9] Chou K.-S., On a real Monge–Ampère functional (K.S. Tso), Invent. Math.101 (1990) 425-448. Zbl0724.35040MR1062970
  10. [10] Chou K.-S., Wang X.-J., A variational theory of the Hessian equation, Comm. Pure Appl. Math.54 (2001) 1029-1064. Zbl1035.35037MR1835381
  11. [11] Garding L., An inequality for hyperbolic polynomials, J. Math. Mech.8 (1959) 957-965. Zbl0090.01603MR113978
  12. [12] Ge Y., Wang G., On a conformal quotient equation, in preparation. Zbl1133.53033
  13. [13] González M. d. M., Removability of singularities for a class of fully non-linear elliptic equations Preprint, 2004. MR2263673
  14. [14] Gromov M., Lawson H.B., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2)111 (1980) 423-434. Zbl0463.53025MR577131
  15. [15] Guan P., Lin C.-S., Wang G., Schouten tensor and some topological properties, Comm. Anal. Geom.13 (2005) 845-860. Zbl1110.53025MR2216144
  16. [16] Guan P., Lin C.-S., Wang G., Local gradient estimates for conformal quotient equations, Preprint. Zbl1121.53028
  17. [17] Guan P., Viaclovsky J., Wang G., Some properties of the Schouten tensor and applications to conformal geometry, Trans. Amer. Math. Soc.355 (2003) 925-933. Zbl1022.53035MR1938739
  18. [18] Guan P., Wang G., Local estimates for a class of fully nonlinear equations arising from conformal geometry, Int. Math. Res. Not.2003 (2003) 1413-1432. Zbl1042.53021MR1976045
  19. [19] Guan P., Wang G., A fully nonlinear conformal flow on locally conformally flat manifolds, J. reine angew. Math.557 (2003) 219-238. Zbl1033.53058MR1978409
  20. [20] Guan P., Wang G., Geometric inequalities on locally conformally flat manifolds, Duke Math. J.124 (2004) 177-212. Zbl1059.53034MR2072215
  21. [21] Guan P., Wang G., A fully nonlinear conformal flow on locally conformally flat manifolds, math.DG/0112256, v1 of [19]. 
  22. [22] Gursky M., Viaclovsky J., Volume comparison and the σ k -Yamabe problem, Adv. in Math.187 (2004) 447-487. Zbl1066.53081MR2078344
  23. [23] Gursky M., Viaclovsky J., A fully nonlinear equation on 4-manifolds with positive scalar curvature, J. Differential Geom.63 (2003) 131-154. Zbl1070.53018MR2015262
  24. [24] Gursky M., Viaclovsky J., Prescribing symmetric functions of the eigenvalues of the Ricci tensor, Ann of Math., submitted for publication, math.DG/0409187. Zbl1142.53027
  25. [25] Habermann L., Riemannian Metrics of Constant Mass and Moduli Spaces of Conformal Structures, Lecture Notes in Mathematics, vol. 1743, Springer, Berlin, 2000. Zbl0964.58008MR1790086
  26. [26] Hebey E., Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Math., vol. 5, Courant Inst. of Math. Sci./Amer. Math. Soc., New York/Providence, RI, 1999. Zbl0981.58006MR1688256
  27. [27] Krylov N., Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel, Dordrecht, 1987. Zbl0619.35004MR901759
  28. [28] Lee J., Parker T., The Yamabe problem, Bull. Amer. Math. Soc. (N.S.)17 (1987) 37-91. Zbl0633.53062MR888880
  29. [29] Li A., Li Y., On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math.56 (2003) 1416-1464. Zbl1155.35353MR1988895
  30. [30] Lions P.L., Two remarks on the Monge–Ampère, Ann. Mat. Pura Appl.142 (1985) 263-275. Zbl0594.35023MR839040
  31. [31] Micallef M., Wang M., Metrics with nonnegative isotropic curvature, Duke Math. J.72 (1993) 649-672. Zbl0804.53058MR1253619
  32. [32] Schoen R., Conformal deformation of a Riemannian metric to constant curvature, J. Differential Geom.20 (1984) 479-495. Zbl0576.53028MR788292
  33. [33] Sha J.-P., Yang D.G., Positive Ricci curvature on the connected sums of S n × S m , J. Differential Geom.33 (1991) 127-137. Zbl0728.53027MR1085137
  34. [34] Sheng W., Trudinger N., Wang X., The Yamabe problem for higher order curvatures, math.DG/0505463. Zbl1133.53035
  35. [35] Simon L., Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math.118 (1983) 525-571. Zbl0549.35071MR727703
  36. [36] Trudinger N., On imbeddings into Orlicz spaces and some applications, J. Math. Mech.17 (1967) 473-483. Zbl0163.36402MR216286
  37. [37] Trudinger N., Wang X.-J., A Poincaré type inequality for Hessian integrals, Calc. Var. Partial Differential Equations6 (4) (1998) 315-328. Zbl0927.58013MR1624292
  38. [38] Viaclovsky J., Conformal geometry, contact geometry and the calculus of variations, Duke J. Math.101 (2) (2000) 283-316. Zbl0990.53035MR1738176
  39. [39] Viaclovsky J., Conformally invariant Monge–Ampère equations: Global solutions, Trans. Amer. Math. Soc.352 (2000) 4371-4379. Zbl0951.35044MR1694380
  40. [40] Viaclovsky J., Estimates and some existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom.10 (2002) 815-847. Zbl1023.58021MR1925503
  41. [41] Wang X.J., A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J.43 (1994) 25-54. Zbl0805.35036MR1275451
  42. [42] Yamabe H., On a deformation of Riemannian structures on compact manifolds, Osaka Math. J.12 (1960) 21-37. Zbl0096.37201MR125546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.