On a fully nonlinear Yamabe problem
Annales scientifiques de l'École Normale Supérieure (2006)
- Volume: 39, Issue: 4, page 569-598
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGe, Yuxin, and Wang, Guofang. "On a fully nonlinear Yamabe problem." Annales scientifiques de l'École Normale Supérieure 39.4 (2006): 569-598. <http://eudml.org/doc/82695>.
@article{Ge2006,
author = {Ge, Yuxin, Wang, Guofang},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Schouten tensor; conformal metrics; -Yamabe problem; fully nonlinear elliptic equation},
language = {eng},
number = {4},
pages = {569-598},
publisher = {Elsevier},
title = {On a fully nonlinear Yamabe problem},
url = {http://eudml.org/doc/82695},
volume = {39},
year = {2006},
}
TY - JOUR
AU - Ge, Yuxin
AU - Wang, Guofang
TI - On a fully nonlinear Yamabe problem
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 4
SP - 569
EP - 598
LA - eng
KW - Schouten tensor; conformal metrics; -Yamabe problem; fully nonlinear elliptic equation
UR - http://eudml.org/doc/82695
ER -
References
top- [1] Andrews B., Monotone quantities and unique limits for evolving convex hypersurfaces, Internat. Math. Res. Notices1997 (1997) 1001-1031. Zbl0892.53002MR1486693
- [2] Aubin T., Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl.55 (1976) 269-296. Zbl0336.53033MR431287
- [3] Aubin T., Li Y., On the best Sobolev inequality, J. Math. Pures Appl.78 (1999) 353-387. Zbl0944.46027MR1696357
- [4] Brendle S., Viaclovsky J., A variational characterization for , Calc. Var. Partial Differential Equations20 (2004) 399-402. Zbl1059.53033MR2071927
- [5] Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math.155 (1985) 261-301. Zbl0654.35031MR806416
- [6] Chang A., Gursky M., Yang P., An equation of Monge–Ampère type in conformal geometry, and four manifolds of positive Ricci curvature, Ann. of Math.155 (2002) 709-787. Zbl1031.53062MR1923964
- [7] Chang A., Gursky M., Yang P., An a priori estimate for a fully nonlinear equation on Four-manifolds, J. Anal. Math.87 (2002) 151-186. Zbl1067.58028MR1945280
- [8] Chang A., Gursky M., Yang P., Entire solutions of a fully nonlinear equation, in: Lectures on Partial Differential Equations, New Stud. Adv. Math., vol. 2, Int. Press, Somerville, MA, 2003, pp. 43-60. Zbl1183.53035MR2055838
- [9] Chou K.-S., On a real Monge–Ampère functional (K.S. Tso), Invent. Math.101 (1990) 425-448. Zbl0724.35040MR1062970
- [10] Chou K.-S., Wang X.-J., A variational theory of the Hessian equation, Comm. Pure Appl. Math.54 (2001) 1029-1064. Zbl1035.35037MR1835381
- [11] Garding L., An inequality for hyperbolic polynomials, J. Math. Mech.8 (1959) 957-965. Zbl0090.01603MR113978
- [12] Ge Y., Wang G., On a conformal quotient equation, in preparation. Zbl1133.53033
- [13] González M. d. M., Removability of singularities for a class of fully non-linear elliptic equations Preprint, 2004. MR2263673
- [14] Gromov M., Lawson H.B., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2)111 (1980) 423-434. Zbl0463.53025MR577131
- [15] Guan P., Lin C.-S., Wang G., Schouten tensor and some topological properties, Comm. Anal. Geom.13 (2005) 845-860. Zbl1110.53025MR2216144
- [16] Guan P., Lin C.-S., Wang G., Local gradient estimates for conformal quotient equations, Preprint. Zbl1121.53028
- [17] Guan P., Viaclovsky J., Wang G., Some properties of the Schouten tensor and applications to conformal geometry, Trans. Amer. Math. Soc.355 (2003) 925-933. Zbl1022.53035MR1938739
- [18] Guan P., Wang G., Local estimates for a class of fully nonlinear equations arising from conformal geometry, Int. Math. Res. Not.2003 (2003) 1413-1432. Zbl1042.53021MR1976045
- [19] Guan P., Wang G., A fully nonlinear conformal flow on locally conformally flat manifolds, J. reine angew. Math.557 (2003) 219-238. Zbl1033.53058MR1978409
- [20] Guan P., Wang G., Geometric inequalities on locally conformally flat manifolds, Duke Math. J.124 (2004) 177-212. Zbl1059.53034MR2072215
- [21] Guan P., Wang G., A fully nonlinear conformal flow on locally conformally flat manifolds, math.DG/0112256, v1 of [19].
- [22] Gursky M., Viaclovsky J., Volume comparison and the -Yamabe problem, Adv. in Math.187 (2004) 447-487. Zbl1066.53081MR2078344
- [23] Gursky M., Viaclovsky J., A fully nonlinear equation on 4-manifolds with positive scalar curvature, J. Differential Geom.63 (2003) 131-154. Zbl1070.53018MR2015262
- [24] Gursky M., Viaclovsky J., Prescribing symmetric functions of the eigenvalues of the Ricci tensor, Ann of Math., submitted for publication, math.DG/0409187. Zbl1142.53027
- [25] Habermann L., Riemannian Metrics of Constant Mass and Moduli Spaces of Conformal Structures, Lecture Notes in Mathematics, vol. 1743, Springer, Berlin, 2000. Zbl0964.58008MR1790086
- [26] Hebey E., Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Math., vol. 5, Courant Inst. of Math. Sci./Amer. Math. Soc., New York/Providence, RI, 1999. Zbl0981.58006MR1688256
- [27] Krylov N., Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel, Dordrecht, 1987. Zbl0619.35004MR901759
- [28] Lee J., Parker T., The Yamabe problem, Bull. Amer. Math. Soc. (N.S.)17 (1987) 37-91. Zbl0633.53062MR888880
- [29] Li A., Li Y., On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math.56 (2003) 1416-1464. Zbl1155.35353MR1988895
- [30] Lions P.L., Two remarks on the Monge–Ampère, Ann. Mat. Pura Appl.142 (1985) 263-275. Zbl0594.35023MR839040
- [31] Micallef M., Wang M., Metrics with nonnegative isotropic curvature, Duke Math. J.72 (1993) 649-672. Zbl0804.53058MR1253619
- [32] Schoen R., Conformal deformation of a Riemannian metric to constant curvature, J. Differential Geom.20 (1984) 479-495. Zbl0576.53028MR788292
- [33] Sha J.-P., Yang D.G., Positive Ricci curvature on the connected sums of , J. Differential Geom.33 (1991) 127-137. Zbl0728.53027MR1085137
- [34] Sheng W., Trudinger N., Wang X., The Yamabe problem for higher order curvatures, math.DG/0505463. Zbl1133.53035
- [35] Simon L., Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math.118 (1983) 525-571. Zbl0549.35071MR727703
- [36] Trudinger N., On imbeddings into Orlicz spaces and some applications, J. Math. Mech.17 (1967) 473-483. Zbl0163.36402MR216286
- [37] Trudinger N., Wang X.-J., A Poincaré type inequality for Hessian integrals, Calc. Var. Partial Differential Equations6 (4) (1998) 315-328. Zbl0927.58013MR1624292
- [38] Viaclovsky J., Conformal geometry, contact geometry and the calculus of variations, Duke J. Math.101 (2) (2000) 283-316. Zbl0990.53035MR1738176
- [39] Viaclovsky J., Conformally invariant Monge–Ampère equations: Global solutions, Trans. Amer. Math. Soc.352 (2000) 4371-4379. Zbl0951.35044MR1694380
- [40] Viaclovsky J., Estimates and some existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom.10 (2002) 815-847. Zbl1023.58021MR1925503
- [41] Wang X.J., A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J.43 (1994) 25-54. Zbl0805.35036MR1275451
- [42] Yamabe H., On a deformation of Riemannian structures on compact manifolds, Osaka Math. J.12 (1960) 21-37. Zbl0096.37201MR125546
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.