Problèmes de Yamabe généralisés et ses applications

Yuxin Ge[1]

  • [1] Université Paris XII - Val de Marne Faculté de Sciences et Technologie Centre de Mathématiques 61 avenue du Général de Gaulle 94010 Créteil cedex (France)

Séminaire de théorie spectrale et géométrie (2006-2007)

  • Volume: 25, page 211-226
  • ISSN: 1624-5458

Abstract

top
On étudie quelques équations complètement non linéaires issues de la géométrie conforme. Par une méthode de flot géométrique, on prouve l’existence des solutions. En utilisant ce résultat analytique, on obtient un théorème sur la topologie de la variété : soit M une variété riemannienne compacte de dimension 3. S’il existe une metrique g à courbure scalaire strictement positive telle que l’intégrale de la σ 2 -courbure scalaire soit positive, alors M est difféomorphe à un quotient de la sphere.

How to cite

top

Ge, Yuxin. "Problèmes de Yamabe généralisés et ses applications." Séminaire de théorie spectrale et géométrie 25 (2006-2007): 211-226. <http://eudml.org/doc/11227>.

@article{Ge2006-2007,
abstract = {On étudie quelques équations complètement non linéaires issues de la géométrie conforme. Par une méthode de flot géométrique, on prouve l’existence des solutions. En utilisant ce résultat analytique, on obtient un théorème sur la topologie de la variété : soit $M$ une variété riemannienne compacte de dimension 3. S’il existe une metrique $g$ à courbure scalaire strictement positive telle que l’intégrale de la $\sigma _2$-courbure scalaire soit positive, alors $M$ est difféomorphe à un quotient de la sphere.},
affiliation = {Université Paris XII - Val de Marne Faculté de Sciences et Technologie Centre de Mathématiques 61 avenue du Général de Gaulle 94010 Créteil cedex (France)},
author = {Ge, Yuxin},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {geometric flow; -curvature; Garding cone},
language = {fre},
pages = {211-226},
publisher = {Institut Fourier},
title = {Problèmes de Yamabe généralisés et ses applications},
url = {http://eudml.org/doc/11227},
volume = {25},
year = {2006-2007},
}

TY - JOUR
AU - Ge, Yuxin
TI - Problèmes de Yamabe généralisés et ses applications
JO - Séminaire de théorie spectrale et géométrie
PY - 2006-2007
PB - Institut Fourier
VL - 25
SP - 211
EP - 226
AB - On étudie quelques équations complètement non linéaires issues de la géométrie conforme. Par une méthode de flot géométrique, on prouve l’existence des solutions. En utilisant ce résultat analytique, on obtient un théorème sur la topologie de la variété : soit $M$ une variété riemannienne compacte de dimension 3. S’il existe une metrique $g$ à courbure scalaire strictement positive telle que l’intégrale de la $\sigma _2$-courbure scalaire soit positive, alors $M$ est difféomorphe à un quotient de la sphere.
LA - fre
KW - geometric flow; -curvature; Garding cone
UR - http://eudml.org/doc/11227
ER -

References

top
  1. Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970), 383–424. Zbl0212.54102MR279731
  2. T. Aubin, Équations différentilles non linéaires et probléme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. Zbl0336.53033MR431287
  3. S. Brendle and J. Viaclovsky, A variational characterization for σ n / 2 , Calc. Var. P. D. E. 20 (2004), 399–402. Zbl1059.53033MR2071927
  4. G. Catino and Z. Djadli, Integral pinched 3-manifolds are space forms, ArXiv : math.DG/07070338. Zbl1182.53040
  5. A. Chang, M. Gursky and P. Yang, An equation of Monge-ampère type in conformal geometry, and four manifolds of positive Ricci curvature, Ann. of Math.,155 (2002), 709-787. Zbl1031.53062MR1923964
  6. A. Chang, Gursky and P. Yang, An a priori estimates for a fully nonlinear equation on Four-manifolds, J. D’Analysis Math., 87 (2002), 151–186. Zbl1067.58028
  7. A. Chang, Gursky and P. Yang, Entire solutions of a fully nonlinear equation, Lectures on partial differential equations, 43–60, New Stud. Adv. Math., 2, Int. Press, Somerville, MA, 2003. Zbl1183.53035MR2055838
  8. A. Chang, Gursky and P. Yang, A conformally invariant sphere theorem in four dimensions, Publ. Math. Inst. Hautes Études Sci.98 (2003), 105–143. Zbl1066.53079
  9. S. Chen, Local estimates for some fully nonlinear elliptic equations, Int. Math. Res. Not. 2005 (2005), 3403–3425. Zbl1159.35343MR2204639
  10. A. Futaki, Scalar-flat closed manifolds not admitting positive scalar curvature metrics, Invent. Math., 112 (1993), 23–29. Zbl0792.53036MR1207476
  11. Z. Gao and S.T. Yau, The existence of negatively Ricci curved metrics on three-manifolds., Invent. Math. , 85 (1986), 637–652. Zbl0603.53025MR848687
  12. Y. Ge, C.S.Lin and G. Wang, On the σ 2 -scalar curvature, prépublication. 
  13. Y. Ge and G. Wang, On a fully nonlinear Yamabe problem, Ann. Sci. École Norm. Sup., 39 (2006) 569–598. Zbl1121.53027MR2290138
  14. Y. Ge and G. Wang, On a quotient conformal equation, to appear in Int. Math. Res. Not.. 
  15. Y. Ge and G. Wang, en préparation. 
  16. M. Gromov and H. B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), 423–434. Zbl0463.53025MR577131
  17. P. Guan, Topics in Geometric Fully Nonlinear Equations, Lecture Notes, http ://www.math.mcgill.ca/guan/notes.html 
  18. P. Guan, C.-S. Lin and G. Wang, local gradient estimates for conformal quotient equations, to appear in Int. J. Math. Zbl1121.53028MR2325351
  19. P. Guan and G. Wang, Local estimates for a class of fully nonlinear equations arising from conformal geometry, Intern. Math. Res. Not. , 2003, (2003), 1413-1432. Zbl1042.53021MR1976045
  20. P. Guan and G. Wang, A fully nonlinear conformal flow on locally conformally flat manifolds, J. reine und angew. Math., 557, (2003), 219-238. Zbl1033.53058MR1978409
  21. P. Guan and G. Wang, Geometric inequalities on locally conformally flat manifolds, Duke Math. J., 124, (2004), 177-212. Zbl1059.53034MR2072215
  22. M. Gursky and J. Viaclovsky, A new variational characterization of three-dimensional space forms. Invent. Math. 145 (2001), no. 2, 251–278. Zbl1006.58008MR1872547
  23. M. Gursky and J. Viaclovsky, Volume comparison and the σ k -Yamabe problem, Adv. in Math. 187 (2004), 447-487. Zbl1066.53081MR2078344
  24. M. Gursky and J. Viaclovsky, A fully nonlinear equation on 4-manifolds with positive scalar curvature, J. Diff. Geom., 63, (2003), 131-154. Zbl1070.53018MR2015262
  25. M. Gursky and J. Viaclovsky, Prescribing symmetric functions of the eigenvalues of the Ricci tensor, to appear in Annals Math. Zbl1142.53027MR2373147
  26. M. Gursky and J. Viaclovsky, Fully nonlinear equations on Riemannian manifolds with negative curvature, Indiana Univ. Math. J., 52 (2003), 399–419. Zbl1036.53025MR1976082
  27. R. Hamilton, Three-manifolds with positive Ricci curvature. J. Differential Geom. , 17 (1982), 255–306. Zbl0504.53034MR664497
  28. N. Hitchin, Harmonic spinors, Adv. Math. ,14 (1974) 1–55. Zbl0284.58016MR358873
  29. J. Kazdan and F. Warner, Scalar curvature and conformal deformation of Riemannian structure. J. Differential Geometry, 10 (1975), 113–134. Zbl0296.53037MR365409
  30. J. Kazdan and F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. of Math. (2) 101 (1975), 317–331. Zbl0297.53020MR375153
  31. A. Li and Y. Li, On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math., 56 (2003), 1416–1464. Zbl1155.35353MR1988895
  32. A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris, 257 (1963) 7–9. Zbl0136.18401MR156292
  33. J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), 655–683. Zbl0824.53033MR1307899
  34. R. Schoen, Conformal deformation of a Riemannian metric to constant curvature, J. Diff. Geom., 20 (1984), 479-495. Zbl0576.53028MR788292
  35. R. Schoen ans S. T. Yau, On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28 (1979), 159–183. Zbl0423.53032MR535700
  36. W.M. Sheng, N.Trudinger, X.-J. Wang the Yamabe problem for higher order curvatures, ArXiv : math.DG/0505463. MR2362323
  37. S. Stolz, Simply connected manifolds of positive scalar curvature. Ann. of Math. (2) 136 (1992), 511–540. Zbl0784.53029MR1189863
  38. N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. Zbl0163.36402MR216286
  39. J. Viaclovsky, Conformal geometry, contact geometry and the calculus of variations, Duke J. Math. 101 (2000), no. 2, 283-316. Zbl0990.53035MR1738176
  40. J. Viaclovsky, Estimates and some existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom. 10 (2002), 815-847. Zbl1023.58021MR1925503
  41. J. Viaclovsky Conformal geometry and fully nonlinear equations. Arxiv : DG/0609158 Zbl1142.53030MR2313345
  42. H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12 (1960), 21–37. Zbl0096.37201MR125546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.