Problèmes de Yamabe généralisés et ses applications
Yuxin Ge[1]
- [1] Université Paris XII - Val de Marne Faculté de Sciences et Technologie Centre de Mathématiques 61 avenue du Général de Gaulle 94010 Créteil cedex (France)
Séminaire de théorie spectrale et géométrie (2006-2007)
- Volume: 25, page 211-226
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topGe, Yuxin. "Problèmes de Yamabe généralisés et ses applications." Séminaire de théorie spectrale et géométrie 25 (2006-2007): 211-226. <http://eudml.org/doc/11227>.
@article{Ge2006-2007,
abstract = {On étudie quelques équations complètement non linéaires issues de la géométrie conforme. Par une méthode de flot géométrique, on prouve l’existence des solutions. En utilisant ce résultat analytique, on obtient un théorème sur la topologie de la variété : soit $M$ une variété riemannienne compacte de dimension 3. S’il existe une metrique $g$ à courbure scalaire strictement positive telle que l’intégrale de la $\sigma _2$-courbure scalaire soit positive, alors $M$ est difféomorphe à un quotient de la sphere.},
affiliation = {Université Paris XII - Val de Marne Faculté de Sciences et Technologie Centre de Mathématiques 61 avenue du Général de Gaulle 94010 Créteil cedex (France)},
author = {Ge, Yuxin},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {geometric flow; -curvature; Garding cone},
language = {fre},
pages = {211-226},
publisher = {Institut Fourier},
title = {Problèmes de Yamabe généralisés et ses applications},
url = {http://eudml.org/doc/11227},
volume = {25},
year = {2006-2007},
}
TY - JOUR
AU - Ge, Yuxin
TI - Problèmes de Yamabe généralisés et ses applications
JO - Séminaire de théorie spectrale et géométrie
PY - 2006-2007
PB - Institut Fourier
VL - 25
SP - 211
EP - 226
AB - On étudie quelques équations complètement non linéaires issues de la géométrie conforme. Par une méthode de flot géométrique, on prouve l’existence des solutions. En utilisant ce résultat analytique, on obtient un théorème sur la topologie de la variété : soit $M$ une variété riemannienne compacte de dimension 3. S’il existe une metrique $g$ à courbure scalaire strictement positive telle que l’intégrale de la $\sigma _2$-courbure scalaire soit positive, alors $M$ est difféomorphe à un quotient de la sphere.
LA - fre
KW - geometric flow; -curvature; Garding cone
UR - http://eudml.org/doc/11227
ER -
References
top- Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970), 383–424. Zbl0212.54102MR279731
- T. Aubin, Équations différentilles non linéaires et probléme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. Zbl0336.53033MR431287
- S. Brendle and J. Viaclovsky, A variational characterization for , Calc. Var. P. D. E. 20 (2004), 399–402. Zbl1059.53033MR2071927
- G. Catino and Z. Djadli, Integral pinched 3-manifolds are space forms, ArXiv : math.DG/07070338. Zbl1182.53040
- A. Chang, M. Gursky and P. Yang, An equation of Monge-ampère type in conformal geometry, and four manifolds of positive Ricci curvature, Ann. of Math.,155 (2002), 709-787. Zbl1031.53062MR1923964
- A. Chang, Gursky and P. Yang, An a priori estimates for a fully nonlinear equation on Four-manifolds, J. D’Analysis Math., 87 (2002), 151–186. Zbl1067.58028
- A. Chang, Gursky and P. Yang, Entire solutions of a fully nonlinear equation, Lectures on partial differential equations, 43–60, New Stud. Adv. Math., 2, Int. Press, Somerville, MA, 2003. Zbl1183.53035MR2055838
- A. Chang, Gursky and P. Yang, A conformally invariant sphere theorem in four dimensions, Publ. Math. Inst. Hautes Études Sci.98 (2003), 105–143. Zbl1066.53079
- S. Chen, Local estimates for some fully nonlinear elliptic equations, Int. Math. Res. Not. 2005 (2005), 3403–3425. Zbl1159.35343MR2204639
- A. Futaki, Scalar-flat closed manifolds not admitting positive scalar curvature metrics, Invent. Math., 112 (1993), 23–29. Zbl0792.53036MR1207476
- Z. Gao and S.T. Yau, The existence of negatively Ricci curved metrics on three-manifolds., Invent. Math. , 85 (1986), 637–652. Zbl0603.53025MR848687
- Y. Ge, C.S.Lin and G. Wang, On the -scalar curvature, prépublication.
- Y. Ge and G. Wang, On a fully nonlinear Yamabe problem, Ann. Sci. École Norm. Sup., 39 (2006) 569–598. Zbl1121.53027MR2290138
- Y. Ge and G. Wang, On a quotient conformal equation, to appear in Int. Math. Res. Not..
- Y. Ge and G. Wang, en préparation.
- M. Gromov and H. B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), 423–434. Zbl0463.53025MR577131
- P. Guan, Topics in Geometric Fully Nonlinear Equations, Lecture Notes, http ://www.math.mcgill.ca/guan/notes.html
- P. Guan, C.-S. Lin and G. Wang, local gradient estimates for conformal quotient equations, to appear in Int. J. Math. Zbl1121.53028MR2325351
- P. Guan and G. Wang, Local estimates for a class of fully nonlinear equations arising from conformal geometry, Intern. Math. Res. Not. , 2003, (2003), 1413-1432. Zbl1042.53021MR1976045
- P. Guan and G. Wang, A fully nonlinear conformal flow on locally conformally flat manifolds, J. reine und angew. Math., 557, (2003), 219-238. Zbl1033.53058MR1978409
- P. Guan and G. Wang, Geometric inequalities on locally conformally flat manifolds, Duke Math. J., 124, (2004), 177-212. Zbl1059.53034MR2072215
- M. Gursky and J. Viaclovsky, A new variational characterization of three-dimensional space forms. Invent. Math. 145 (2001), no. 2, 251–278. Zbl1006.58008MR1872547
- M. Gursky and J. Viaclovsky, Volume comparison and the -Yamabe problem, Adv. in Math. 187 (2004), 447-487. Zbl1066.53081MR2078344
- M. Gursky and J. Viaclovsky, A fully nonlinear equation on 4-manifolds with positive scalar curvature, J. Diff. Geom., 63, (2003), 131-154. Zbl1070.53018MR2015262
- M. Gursky and J. Viaclovsky, Prescribing symmetric functions of the eigenvalues of the Ricci tensor, to appear in Annals Math. Zbl1142.53027MR2373147
- M. Gursky and J. Viaclovsky, Fully nonlinear equations on Riemannian manifolds with negative curvature, Indiana Univ. Math. J., 52 (2003), 399–419. Zbl1036.53025MR1976082
- R. Hamilton, Three-manifolds with positive Ricci curvature. J. Differential Geom. , 17 (1982), 255–306. Zbl0504.53034MR664497
- N. Hitchin, Harmonic spinors, Adv. Math. ,14 (1974) 1–55. Zbl0284.58016MR358873
- J. Kazdan and F. Warner, Scalar curvature and conformal deformation of Riemannian structure. J. Differential Geometry, 10 (1975), 113–134. Zbl0296.53037MR365409
- J. Kazdan and F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. of Math. (2) 101 (1975), 317–331. Zbl0297.53020MR375153
- A. Li and Y. Li, On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math., 56 (2003), 1416–1464. Zbl1155.35353MR1988895
- A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris, 257 (1963) 7–9. Zbl0136.18401MR156292
- J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), 655–683. Zbl0824.53033MR1307899
- R. Schoen, Conformal deformation of a Riemannian metric to constant curvature, J. Diff. Geom., 20 (1984), 479-495. Zbl0576.53028MR788292
- R. Schoen ans S. T. Yau, On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28 (1979), 159–183. Zbl0423.53032MR535700
- W.M. Sheng, N.Trudinger, X.-J. Wang the Yamabe problem for higher order curvatures, ArXiv : math.DG/0505463. MR2362323
- S. Stolz, Simply connected manifolds of positive scalar curvature. Ann. of Math. (2) 136 (1992), 511–540. Zbl0784.53029MR1189863
- N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. Zbl0163.36402MR216286
- J. Viaclovsky, Conformal geometry, contact geometry and the calculus of variations, Duke J. Math. 101 (2000), no. 2, 283-316. Zbl0990.53035MR1738176
- J. Viaclovsky, Estimates and some existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom. 10 (2002), 815-847. Zbl1023.58021MR1925503
- J. Viaclovsky Conformal geometry and fully nonlinear equations. Arxiv : DG/0609158 Zbl1142.53030MR2313345
- H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12 (1960), 21–37. Zbl0096.37201MR125546
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.