Existence of C 1 , 1 critical sub-solutions of the Hamilton–Jacobi equation on compact manifolds

Patrick Bernard

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 3, page 445-452
  • ISSN: 0012-9593

How to cite

top

Bernard, Patrick. "Existence of ${C}^{1,1}$ critical sub-solutions of the Hamilton–Jacobi equation on compact manifolds." Annales scientifiques de l'École Normale Supérieure 40.3 (2007): 445-452. <http://eudml.org/doc/82717>.

@article{Bernard2007,
author = {Bernard, Patrick},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Mather theory; Aubry set},
language = {eng},
number = {3},
pages = {445-452},
publisher = {Elsevier},
title = {Existence of $\{C\}^\{1,1\}$ critical sub-solutions of the Hamilton–Jacobi equation on compact manifolds},
url = {http://eudml.org/doc/82717},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Bernard, Patrick
TI - Existence of ${C}^{1,1}$ critical sub-solutions of the Hamilton–Jacobi equation on compact manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 3
SP - 445
EP - 452
LA - eng
KW - Mather theory; Aubry set
UR - http://eudml.org/doc/82717
ER -

References

top
  1. [1] Bernard P., The dynamics of pseudographs in convex Hamiltonian systems, J. Am. Math. Soc., in press. Zbl1213.37089
  2. [2] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 2004. Zbl1095.49003
  3. [3] Contreras G., Iturriaga R., Paternain G.P., Paternain M., Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal.8 (5) (1998) 788-809. Zbl0920.58015MR1650090
  4. [4] Fathi A., Weak KAM Theorem in Lagrangian Dynamics, book in press. 
  5. [5] Fathi A., Siconolfi A., Existence of C 1 critical sub-solutions of the Hamilton–Jacobi equation, Invent. Math.155 (2) (2004) 363-388. Zbl1061.58008
  6. [6] Fathi A., Siconolfi A., PDE aspects of Aubry–Mather theory for quasiconvex Hamiltonians, Calc. Var. Partial Differential Equations22 (2005) 185-228. Zbl1065.35092
  7. [7] Lasry J.M., Lions J.L., A remark on regularization in Hilbert spaces, Israel J. Math.55 (3) (1986) 257-266. Zbl0631.49018MR876394
  8. [8] Massart D., Sub-solutions of time-periodic Hamilton–Jacobi equations, Ergodic Theory Dynam. Systems, in press. Zbl1121.37049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.