Regularity of weak KAM solutions and Mañé’s Conjecture
- [1] Université de Nice-Sophia Antipolis Labo. J.-A. Dieudonné, UMR CNRS 6621 Parc Valrose 06108 Nice Cedex 02 France & Institut Universitaire de France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-22
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topRifford, Ludovic. "Regularity of weak KAM solutions and Mañé’s Conjecture." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-22. <http://eudml.org/doc/251159>.
@article{Rifford2011-2012,
abstract = {We provide a crash course in weak KAM theory and review recent results concerning the existence and uniqueness of weak KAM solutions and their link with the so-called Mañé conjecture.},
affiliation = {Université de Nice-Sophia Antipolis Labo. J.-A. Dieudonné, UMR CNRS 6621 Parc Valrose 06108 Nice Cedex 02 France & Institut Universitaire de France},
author = {Rifford, Ludovic},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {weak KAM theory; Mañé conjeture; critical Hamilton-Jacobi equation; Aubry set; Tonelli Hamiltonian},
language = {eng},
pages = {1-22},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Regularity of weak KAM solutions and Mañé’s Conjecture},
url = {http://eudml.org/doc/251159},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Rifford, Ludovic
TI - Regularity of weak KAM solutions and Mañé’s Conjecture
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 22
AB - We provide a crash course in weak KAM theory and review recent results concerning the existence and uniqueness of weak KAM solutions and their link with the so-called Mañé conjecture.
LA - eng
KW - weak KAM theory; Mañé conjeture; critical Hamilton-Jacobi equation; Aubry set; Tonelli Hamiltonian
UR - http://eudml.org/doc/251159
ER -
References
top- P. Bernard. Smooth critical sub-solutions of the Hamilton-Jacobi equation. Math. Res. Lett., 14(3):503–511, 2007. Zbl1125.37044MR2318653
- P. Bernard. Existence of critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds. Ann. Sci. École Norm. Sup., 40(3):445–452, 2007. Zbl1133.35027MR2493387
- J.-B. Bost. Tores invariants des systèmes dynamiques hamiltoniens. In Séminaire Bourbaki, Vol. 1984/85 Astérisque, 133-134:113–157, 1986. Zbl0602.58021MR837218
- P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston, MA, 2004. Zbl1095.49003MR2041617
- M. Castelpietra and L. Rifford. Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry. ESAIM Control Optim. Calc. Var., 16 (3):695–718, 2010. Zbl1201.35087MR2674633
- F. Clarke. A Lipschitz regularity theorem. Ergodic Theory Dynam. Systems, 27(6):1713–1718, 2007. Zbl1138.49032MR2371592
- F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. To appear. Zbl1277.49001
- G. Contreras and R. Iturriaga. Convex Hamiltonians without conjugate points. Ergodic Theory Dynam. Systems, 19(4):901–952, 1999. Zbl1044.37046MR1709426
- A. Fathi. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math., 324(9):1043–1046, 1997. Zbl0885.58022MR1451248
- A. Fathi. Solutions KAM faible conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math., 325(6):649–652, 1997. Zbl0943.37031MR1473840
- A. Fathi. Orbites hétéroclones et ensemble de Peierl. C. R. Acad. Sci. Paris Sér. I Math., 326(10):1213–1216, 1998. Zbl0915.58033MR1650195
- A. Fathi. Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math., 327(3):267–270, 1998. Zbl1052.37514MR1650261
- A. Fathi. Weak KAM Theorem and Lagrangian Dynamics. Cambridge University Press, to appear. Zbl0885.58022
- A. Fathi, A. Figalli and L. Rifford. On the Hausdorff dimension of the Mather quotient. Comm. Pure Appl. Math., 62(4):445–500, 2009. Zbl1172.37018MR2492705
- A. Fathi and A. Siconolfi. Existence of critical subsolutions of the Hamilton-Jacobi equation. Invent. math., 1155:363–388, 2004. Zbl1061.58008MR2031431
- A. Figalli and L. Rifford. Closing Aubry sets I. Preprint, 2010. Zbl1321.37061
- A. Figalli and L. Rifford. Closing Aubry sets II. Preprint, 2010. Zbl06412980
- Y. Li and L. Nirenberg. The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math., 58(1):85–146, 2005. Zbl1062.49021MR2094267
- R. Mañé. Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9(2):273–310, 1996. Zbl0886.58037MR1384478
- J. N. Mather. Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207:169–207, 1991. Zbl0696.58027MR1109661
- J. N. Mather. Variational construction of connecting orbits. Ann. Inst. Fourier, 43:1349–1386, 1993. Zbl0803.58019MR1275203
- J. N. Mather. Examples of Aubry sets. Ergod. Th. Dynam. Sys., 24:1667–1723, 2004. Zbl1090.37047MR2104599
- L. Rifford. On viscosity solutions of certain Hamilton-Jacobi equations: Regularity results and generalized Sard’s Theorems. Comm. Partial Differential Equations, 33(3):517–559, 2008. Zbl1134.70007MR2398240
- J.-M. Roquejoffre. Propriétés qualitatives des solutions des équations de Hamilton-Jacobi (d’après A. Fathi, A. Siconolfi, P. Bernard). In Séminaire Bourbaki, Vol. 2006/2007 Astérisque, 317:269–293, 2008. Zbl1162.35003MR2487737
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.