Invariant pseudo-differential operators on a Lie group

Robert S. Strichartz

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1972)

  • Volume: 26, Issue: 3, page 587-611
  • ISSN: 0391-173X

How to cite

top

Strichartz, Robert S.. "Invariant pseudo-differential operators on a Lie group." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.3 (1972): 587-611. <http://eudml.org/doc/83608>.

@article{Strichartz1972,
author = {Strichartz, Robert S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {587-611},
publisher = {Scuola normale superiore},
title = {Invariant pseudo-differential operators on a Lie group},
url = {http://eudml.org/doc/83608},
volume = {26},
year = {1972},
}

TY - JOUR
AU - Strichartz, Robert S.
TI - Invariant pseudo-differential operators on a Lie group
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1972
PB - Scuola normale superiore
VL - 26
IS - 3
SP - 587
EP - 611
LA - eng
UR - http://eudml.org/doc/83608
ER -

References

top
  1. [1] N. Aronszajn & K.T. Smith, Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475. Zbl0102.32401MR143935
  2. [2] R.D. Adams, N. Aronszajn, & M.S. Hanna, Theory of Bessel potentials III, Ann. Inst. Fourier (Grenoble) 19 (1969) 279-338. Zbl0176.09902MR412794
  3. [3] A.P. Calderón, Lebesgue spaces of differentiable functions and distributions, Symp. on Pure Math5 (1961), 33-49. Zbl0195.41103MR143037
  4. [4] E.B. Fabes & N.M. Rivière, Singular integrals with mixed homogeneity, Studia Math.27 (1966), 19-38. Zbl0161.32403MR209787
  5. [5] S. Helgason, Differential geometry and symmetric spaces, Academic Press1962. Zbl0111.18101MR145455
  6. [6] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Symp. on Pure Math10 (1968), 138-183. Zbl0167.09603MR383152
  7. [7] N. Jacobson, Lie Algebras, Interscience1962. Zbl0121.27504MR143793
  8. [8] V.M. Kagan, Boundedness of pseudo-differential operators in Lp, Izv. Vysš. Učebn. Zaved Mathematica1968, no. 6 (73) 35-44 (iu Russian). Zbl0181.36805MR228813
  9. [9] A.W. Knapp & E.M. Stein, Intertwining operators for semisimple groups, to appear Annals of Math. Zbl0257.22015MR460543
  10. [10] J.J. Kohn & L. Nirenbfrg, An algebra of pseudo-differential operators, Comm. Pure Appl. Math18 (1965), 269-305. Zbl0171.35101MR176362
  11. [11] H. Kumano-Go, Pseudo-differential operators and the uniqueness of the Cauchy problem, Comm. Pure Appl. Math.22 (1969), 73-129. Zbl0157.16901
  12. [12] H. Kumano-Go & M. Nagase, Lp-theory of pseudo-differetial operators, Proc. Jap. Acad.46 (1970), 138-142. Zbl0206.10404MR438189
  13. [13] L. Niremberg, Pseudo-differential operators, Proc. Symp. Pure Math16 (1970), 149-167. Zbl0218.35075
  14. [14] L.P. Rothschild, Invariant pseudo-local operators on Lie groups (preprint). Zbl0258.22012
  15. [15] R.T. Seeley, Refinement of the functional calculus of Calderon and Zygmund, Proc. Kon. Ned. Akad. wan wet. 68 (1965), 521-531. Zbl0141.13302MR226450
  16. [16] R.T. Seeley, Singular integrals and boundary value problems, Am. J. Math88 (1966), 781-809. Zbl0178.17601MR209915
  17. [17] E.M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semisimple groups, International Congress of Mathematicians, Nice1970. Zbl0252.43022MR545235
  18. [18] E.M. Stein, Singular integrats and differentiability properties of functions, Princeton U. Press1970. Zbl0207.13501MR290095
  19. [19] R. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech.16 (1967), 1031-1060. Zbl0145.38301MR215084
  20. [20] H. Stetkaer-Hansen, Invariant pseudo-differential operators, Math. Scand. (to appear). Zbl0226.58010MR380900

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.