Invariant pseudo-differential operators on a Lie group
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1972)
- Volume: 26, Issue: 3, page 587-611
- ISSN: 0391-173X
Access Full Article
topHow to cite
topStrichartz, Robert S.. "Invariant pseudo-differential operators on a Lie group." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.3 (1972): 587-611. <http://eudml.org/doc/83608>.
@article{Strichartz1972,
author = {Strichartz, Robert S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {587-611},
publisher = {Scuola normale superiore},
title = {Invariant pseudo-differential operators on a Lie group},
url = {http://eudml.org/doc/83608},
volume = {26},
year = {1972},
}
TY - JOUR
AU - Strichartz, Robert S.
TI - Invariant pseudo-differential operators on a Lie group
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1972
PB - Scuola normale superiore
VL - 26
IS - 3
SP - 587
EP - 611
LA - eng
UR - http://eudml.org/doc/83608
ER -
References
top- [1] N. Aronszajn & K.T. Smith, Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475. Zbl0102.32401MR143935
- [2] R.D. Adams, N. Aronszajn, & M.S. Hanna, Theory of Bessel potentials III, Ann. Inst. Fourier (Grenoble) 19 (1969) 279-338. Zbl0176.09902MR412794
- [3] A.P. Calderón, Lebesgue spaces of differentiable functions and distributions, Symp. on Pure Math5 (1961), 33-49. Zbl0195.41103MR143037
- [4] E.B. Fabes & N.M. Rivière, Singular integrals with mixed homogeneity, Studia Math.27 (1966), 19-38. Zbl0161.32403MR209787
- [5] S. Helgason, Differential geometry and symmetric spaces, Academic Press1962. Zbl0111.18101MR145455
- [6] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Symp. on Pure Math10 (1968), 138-183. Zbl0167.09603MR383152
- [7] N. Jacobson, Lie Algebras, Interscience1962. Zbl0121.27504MR143793
- [8] V.M. Kagan, Boundedness of pseudo-differential operators in Lp, Izv. Vysš. Učebn. Zaved Mathematica1968, no. 6 (73) 35-44 (iu Russian). Zbl0181.36805MR228813
- [9] A.W. Knapp & E.M. Stein, Intertwining operators for semisimple groups, to appear Annals of Math. Zbl0257.22015MR460543
- [10] J.J. Kohn & L. Nirenbfrg, An algebra of pseudo-differential operators, Comm. Pure Appl. Math18 (1965), 269-305. Zbl0171.35101MR176362
- [11] H. Kumano-Go, Pseudo-differential operators and the uniqueness of the Cauchy problem, Comm. Pure Appl. Math.22 (1969), 73-129. Zbl0157.16901
- [12] H. Kumano-Go & M. Nagase, Lp-theory of pseudo-differetial operators, Proc. Jap. Acad.46 (1970), 138-142. Zbl0206.10404MR438189
- [13] L. Niremberg, Pseudo-differential operators, Proc. Symp. Pure Math16 (1970), 149-167. Zbl0218.35075
- [14] L.P. Rothschild, Invariant pseudo-local operators on Lie groups (preprint). Zbl0258.22012
- [15] R.T. Seeley, Refinement of the functional calculus of Calderon and Zygmund, Proc. Kon. Ned. Akad. wan wet. 68 (1965), 521-531. Zbl0141.13302MR226450
- [16] R.T. Seeley, Singular integrals and boundary value problems, Am. J. Math88 (1966), 781-809. Zbl0178.17601MR209915
- [17] E.M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semisimple groups, International Congress of Mathematicians, Nice1970. Zbl0252.43022MR545235
- [18] E.M. Stein, Singular integrats and differentiability properties of functions, Princeton U. Press1970. Zbl0207.13501MR290095
- [19] R. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech.16 (1967), 1031-1060. Zbl0145.38301MR215084
- [20] H. Stetkaer-Hansen, Invariant pseudo-differential operators, Math. Scand. (to appear). Zbl0226.58010MR380900
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.