A simple proof of the mean fourth power estimate for ζ ( 1 2 + i t ) and L ( 1 2 + i t , χ )

K. Ramachandra

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1974)

  • Volume: 1, Issue: 1-2, page 81-97
  • ISSN: 0391-173X

How to cite

top

Ramachandra, K.. "A simple proof of the mean fourth power estimate for $\zeta (\frac{1}{2} + it)$ and $L (\frac{1}{2} + it, \chi )$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.1-2 (1974): 81-97. <http://eudml.org/doc/83673>.

@article{Ramachandra1974,
author = {Ramachandra, K.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1-2},
pages = {81-97},
publisher = {Scuola normale superiore},
title = {A simple proof of the mean fourth power estimate for $\zeta (\frac\{1\}\{2\} + it)$ and $L (\frac\{1\}\{2\} + it, \chi )$},
url = {http://eudml.org/doc/83673},
volume = {1},
year = {1974},
}

TY - JOUR
AU - Ramachandra, K.
TI - A simple proof of the mean fourth power estimate for $\zeta (\frac{1}{2} + it)$ and $L (\frac{1}{2} + it, \chi )$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1974
PB - Scuola normale superiore
VL - 1
IS - 1-2
SP - 81
EP - 97
LA - eng
UR - http://eudml.org/doc/83673
ER -

References

top
  1. [1] K. Chandrasekharan - R. Narasimhan, The approximate functional equation for a class of zeta-functions, Math. Ann., 152 (1963), pp. 30-64. Zbl0116.27001MR153643
  2. [2] P.X. Gallagher, Bombieri's mean value theorem, Mathematika, 15 (1968), pp. 1-6. Zbl0174.08103MR237442
  3. [3] M.N. Huxley, On the difference between consecutive primes, Invent. Math., 15 (1972), pp. 164-170. Zbl0241.10026MR292774
  4. [4] M.N. Huxley, The Distribution of Prime Numbers, Oxford Mathematical Monographs, Oxford (1972). Zbl0248.10030MR444593
  5. [5] M. Jutila, On a density theorem of H. L. Montgomery for L-functions, Annales Academiae Scientiarum Fennicae, Series A, I Mathematica, 520 (1972), pp. 1-12. Zbl0243.10033MR327681
  6. [6] H.L. Montgomery, Mean and large values of Dirichlet polynomials, Invent. Math., 8 (1969), pp. 334-345. Zbl0204.37301MR268130
  7. [7] H.L. Montgomery, Zeros of L-functions, Invent. Math., 8 (1969), pp. 346-354. Zbl0204.37401MR249375
  8. [8] H.L. Montgomery, Topics in Multiplicative Number Theory, Lecture notes in Mathematics, Springer Verlag (1971). Zbl0216.03501MR337847
  9. [9] R. Ramachandra, On a discrete mean value theorem for ζ(s), Jour. Indian. Math. Soc., 36 (1972), pp. 307-316. Zbl0266.10034
  10. [10] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford (1951). Zbl0042.07901MR46485

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.