A degree for a class of acyclic-valued vector fields in Banach spaces

M. Furi; M. Martelli

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1974)

  • Volume: 1, Issue: 3-4, page 301-310
  • ISSN: 0391-173X

How to cite

top

Furi, M., and Martelli, M.. "A degree for a class of acyclic-valued vector fields in Banach spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3-4 (1974): 301-310. <http://eudml.org/doc/83680>.

@article{Furi1974,
author = {Furi, M., Martelli, M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3-4},
pages = {301-310},
publisher = {Scuola normale superiore},
title = {A degree for a class of acyclic-valued vector fields in Banach spaces},
url = {http://eudml.org/doc/83680},
volume = {1},
year = {1974},
}

TY - JOUR
AU - Furi, M.
AU - Martelli, M.
TI - A degree for a class of acyclic-valued vector fields in Banach spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1974
PB - Scuola normale superiore
VL - 1
IS - 3-4
SP - 301
EP - 310
LA - eng
UR - http://eudml.org/doc/83680
ER -

References

top
  1. [1] E.G. Begle, The Vietoris Mapping Theorem for bicompact spaces, Ann. of Math., 51 (1950), pp. 534-543. Zbl0036.38803MR35015
  2. [2] C. Berge, Espaces Topologiques et Functions Multivoques, Dunod, Paris, 1959. Zbl0088.14703MR105663
  3. [3] G.D. Birkoff - O.D. Kellogg, Invariant points in function spaces, Trans. Am. Math. Soc., 23 (1922), pp. 96-115. MR1501192JFM48.0472.02
  4. [4] K. Borsuk, Theory of Retracts, PWNWarzawa (1967). Zbl0153.52905MR216473
  5. [5] S. Eilenberg - D. Montgomery, Fixed point theorems for multivalued transformations, Amer. Jour. of Math., 58 (1946), pp. 214-222. Zbl0060.40203MR16676
  6. [6] S. Eilenberg - N. Steenrod, Foundations of Algebraic Topology, Princeton Un. Press, Princeton, N. J., 1952. Zbl0047.41402MR50886
  7. [7] A. Granas, Sur la notion du degrée topologique pour une certaine classe de trans formations multivalents dans les espaces de Banach, Bull. Acad. Pol. Sci., 7, no. 4 (1959), pp. 191-194. Zbl0087.32303MR108743
  8. [8] A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces Rozprawy Matematyczne, XXX, Warszawa (1962). Zbl0111.11001
  9. [9] A. Granas - J.W. Jaworowski, Some theorems on multivalued nappings of subsets of the Euclidean space, Bull. Acad. Pol. Sci., 7, no. 5 (1959), pp. 277-283. Zbl0089.17902MR120627
  10. [10] S.T. Hu, Theory of Retracts, Wayne, 1965. Zbl0145.43003MR181977
  11. [11] J.W. Jaworowski, On antipodal sets on the sphere and on continuous involutions, Fund. Math., 43 (1956), pp. 241-254. Zbl0072.18501MR82663
  12. [12] E. Rothe, Theorie der topologischen Ordnung und der Vectorfeldern in Banachschen Räumen, Comp. Math., 5 (1937), pp. 177-197. Zbl0018.13304JFM63.0350.01
  13. [13] S.A. Williams, An index for set-valued maps in infinite dimensional spaces, Proc. Am. Math. Soc., 31, no. 2 (1972), pp. 557-563. Zbl0234.55013MR287535

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.