A parabolic quasi-variational inequality arising in hydraulics

Avner Friedman; Robert Jensen

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)

  • Volume: 2, Issue: 3, page 421-468
  • ISSN: 0391-173X

How to cite

top

Friedman, Avner, and Jensen, Robert. "A parabolic quasi-variational inequality arising in hydraulics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.3 (1975): 421-468. <http://eudml.org/doc/83696>.

@article{Friedman1975,
author = {Friedman, Avner, Jensen, Robert},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {421-468},
publisher = {Scuola normale superiore},
title = {A parabolic quasi-variational inequality arising in hydraulics},
url = {http://eudml.org/doc/83696},
volume = {2},
year = {1975},
}

TY - JOUR
AU - Friedman, Avner
AU - Jensen, Robert
TI - A parabolic quasi-variational inequality arising in hydraulics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 3
SP - 421
EP - 468
LA - eng
UR - http://eudml.org/doc/83696
ER -

References

top
  1. [1] J. Bear, Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, New York, 1972. Zbl1191.76001
  2. [2] A. Bensoussan - A. Friedman, Nonlinear variational inequalities and differential games with stopping times, J. Funct. Analys., 16 (1974), 305-352. Zbl0297.90120MR354049
  3. [3] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N. J., 1964. Zbl0144.34903MR181836
  4. [4] A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Funct. Analys., 18 (1975), 151-176. Zbl0295.35045MR477461
  5. [5] A. Friedman, A parabolic system of quasi-variational inequalities, to appear. Zbl0354.35045
  6. [6] A. Friedman - D. Kinderlehrer, A class of parabolic quasi-variational inequalities, J. Diff. Eqs., to appear. Zbl0299.35049
  7. [7] R. Jensen, Finite difference approximations to the free boundary of a parabolic variational inequality, to appear. 
  8. [8] O. A. Ladyzhenskaja - V.A. Solonnikov - N.N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc. Translations, vol. 23, 1968, Providence, R. I. Zbl0174.15403
  9. [9] D. Schaeffer, A new proof of infinite differentiability of the free boundary in the Stefan problem, to appear. MR390499
  10. [10] L. Tartar, Inequations quasi variationelles abstraite, C. R. Acad. Sci. Paris, 278 (1974), 1193-1196. Zbl0334.49003MR344964
  11. [11] P. Van Moerbeke, An optimal stopping problem for linear reward, Acta Math., 132 (1974), 1-41. Zbl0297.60027MR376225

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.