Elastic-plastic torsion problem over multiply connected domains

Tsuan Wu Ting

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1977)

  • Volume: 4, Issue: 2, page 291-312
  • ISSN: 0391-173X

How to cite

top

Ting, Tsuan Wu. "Elastic-plastic torsion problem over multiply connected domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.2 (1977): 291-312. <http://eudml.org/doc/83751>.

@article{Ting1977,
author = {Ting, Tsuan Wu},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {291-312},
publisher = {Scuola normale superiore},
title = {Elastic-plastic torsion problem over multiply connected domains},
url = {http://eudml.org/doc/83751},
volume = {4},
year = {1977},
}

TY - JOUR
AU - Ting, Tsuan Wu
TI - Elastic-plastic torsion problem over multiply connected domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1977
PB - Scuola normale superiore
VL - 4
IS - 2
SP - 291
EP - 312
LA - eng
UR - http://eudml.org/doc/83751
ER -

References

top
  1. [1] H. Brezis, Problèmes unitateraux, J. Math. Pures & Appl., 51 (1972), pp. 1-68; Multiplicateur de Lagrange en torsion « elasto-plastique », Arch. Rat. Mech. Anal., 49 (1972), pp. 32-40. Zbl0237.35001MR346346
  2. [2] H.R. Brezis - M. Sibony, Equivalence de deux inéquations variationnelles et applications, Arch. Rat. Mech. Anal., 41 (1971), pp. 254-265. Zbl0214.11104MR346345
  3. [3] H.R. Brezis - G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France, 96 (1968), pp. 153-180. Zbl0165.45601MR239302
  4. [4] L.A. Caffarelli - N.M. Riviere, On the smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa, Serie IV, 3 (1976), pp. 289-310. Zbl0363.35009MR412940
  5. [5] G. Duvaut - J.L. Lions, Les inéquations en Mécanique et en physique, Dund, Paris, 1972, Chapt. 5. Zbl0298.73001MR464857
  6. [6] G. Fichera, Existence theorems in elasticity, Handbuch der physik, VI a/2, pp. 347-389, Springer - Verlag, New York, 1972. 
  7. [7] G. Gerhardt, Regularity of the solutions of non-linear variational inequalities with a gradient bound as constraint, Arch. Rat. Mach. Anal., 58(1975), pp. 308-315. Zbl0338.49009
  8. [8] P.R. Garabedian, Proof of uniqueness by symmetrization, Studies in Math. Anal. and selected topics, Stanford University, Stanford Calif., 1962, pp. 126-127; Partial differential equations, John Wiley and Sons, New York, 1964. Zbl0114.41204MR149767
  9. [9] D. Kinderlehrer, The free boundary determined by the solution to a differential equation, I. U. Math. J., 25 (1976), pp. 195-208. Zbl0336.35031MR393807
  10. [10] H. Lanchon, Sur la solution du problème de torsion élastoplastique d'une barre cylindrique de section multiconnexe, Compte rendus, Serie A (1971), pp. 1137-1140; Torsion élastoplastique d'un arbre cylindrique de section simplement on multiplement connexe, J. Mech., 13 (1974), pp. 267-320. Zbl0285.73020
  11. [11] H. Lauchon - R. Glowinski, Torsion élasto-plastique d'une barre cylindrique de section multi-connexe, J. mécanique, 12 (1973), pp. 151-171. Zbl0273.73023MR363114
  12. [12] H. Lewy, On the nature of the boundary separating two domains with different regimes, Accad. Naz. Lincei, CCCLXXII (1975), pp. 181-188. 
  13. [13] H. Lewy - G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), pp. 153-188; On existence and smoothness of solutions of some non-coercive variational inequalities, Arch. Rat. Mech. Anal., 41 (1971), pp. 241-253. Zbl0167.11501MR247551
  14. [14] J.L. Lions - G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), pp. 493-519. Zbl0152.34601MR216344
  15. [15] W. Prager - P.G. Hodge, Jr., Theory of perfectly plastic solids, John Wiley and Sons, New York, 1951, Chapter 4. Zbl0044.39803MR51118
  16. [16] G. Stampacchia, Regularity of solutions of some variational inequalities, Nonlinear Functional Analysis (Proc. Symp. Pure Math.,Vol.18), Part. I, pp. 271-281. Zbl0266.49013MR276841
  17. [17] T.Y. Thomas, Plastic flow and fracture of solids, Academic Press, New York, 1961. Zbl0095.38902MR127630
  18. [18] T.W. Ting, (a) The ridge of a Jordan domain and complete plastic torsion, J. Math. Mech., 15 (1960), pp. 15-48. (b) Elastic-plastic torsion of convex cylindrical bars, J. Math. Mech., 19 (1969), pp. 531-551; (c) Elastic-plastic torsion of simply connected cylindrical bars, I. U. Math. J., 20 (1971), pp. 1047-1076; (d) The unloading problem of a severly twisted bar, Pacific J. Math. (to appear). MR184503
  19. [19] C. Truesdell - W. Noll, Handbuch der physik, Vol. III/3, Springer - Verlag, New York, 1965. MR193816
  20. [20] B. De St.VENANT, Memoire sur la torsion des prisms, Mem. div. Sav. Acad. Sci., 14 (1856), pp. 233-560. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.