Smoothness and analyticity of free boundaries in variational inequalities
L. A. Caffarelli; N. M. Rivière
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1976)
- Volume: 3, Issue: 2, page 289-310
- ISSN: 0391-173X
Access Full Article
topHow to cite
topCaffarelli, L. A., and Rivière, N. M.. "Smoothness and analyticity of free boundaries in variational inequalities." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.2 (1976): 289-310. <http://eudml.org/doc/83720>.
@article{Caffarelli1976,
author = {Caffarelli, L. A., Rivière, N. M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {289-310},
publisher = {Scuola normale superiore},
title = {Smoothness and analyticity of free boundaries in variational inequalities},
url = {http://eudml.org/doc/83720},
volume = {3},
year = {1976},
}
TY - JOUR
AU - Caffarelli, L. A.
AU - Rivière, N. M.
TI - Smoothness and analyticity of free boundaries in variational inequalities
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1976
PB - Scuola normale superiore
VL - 3
IS - 2
SP - 289
EP - 310
LA - eng
UR - http://eudml.org/doc/83720
ER -
References
top- [1] H. Brézis - D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. Jour., 23, 9 (March 1974), pp. 831-844. Zbl0278.49011MR361436
- [2] L.A. Caffarelli - N.M. Rivière, On the rectifiability of domains with finite perimeter, Ann. Scuola Norm. Sup. Pisa, same issue, pp. 177-186. Zbl0362.49031MR410539
- [3] J. Frehse, On the regularity of the solutions of a second order variational inequality, Boll. U.M.I., IV, 6 (1972), pp. 312-315. Zbl0261.49021MR318650
- [4] A. Friedman - K. Kinderlehrer, A one phase Stefan problem, to appear. Zbl0334.49002
- [5] D. Kinderlehrer, The coincidence set of solutions of certain variational inequalities, Arch. Rat. Mech. and Anal., 40, 3 (1971), pp. 321-250. Zbl0219.49014MR271799
- [6] D. Kinderlehrer, How a minimal surface leaves an obstacle, Acta. Math., 430 (1973), pp. 221-242. Zbl0268.49050MR419997
- [7] D. Kinderlehrer, The free boundary determined by the solution to a differential equation, Indiana Journ. of Math., to appear. Zbl0336.35031MR393807
- [8] H. Lewy, On minimal surfaces with partly free boundary, Comm. Pure and Appl. Math., 4 (1951), pp. 1-13. MR52711
- [9] H. Lewy, On the reflection laws of second order differential equations in two independent variables, Bull. Amer. Math. Soc., 65 (1959), pp. 37-58. Zbl0089.08001MR104048
- [10] H. Lewy, On the nature of the boundary separating two domains with different regimes, to appear.
- [11] H. Lewy - G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure and Appl. Math., 22 (1969), pp. 153-188. Zbl0167.11501MR247551
- [12] A. McNabb, Strong comparison theorems for elliptic equations of second order, J. Math. Mech., 10 (1961), pp. 431-440. Zbl0106.29903MR142881
Citations in EuDML Documents
top- L. A. Caffarelli, N. M. Rivière, On the rectifiability of domains with finite perimeter
- David G. Schaeffer, Some examples of singularities in a free boundary
- Tsuan Wu Ting, Elastic-plastic torsion problem over multiply connected domains
- Jean Dolbeault, Régis Monneau, Convexity estimates for nonlinear elliptic equations and application to free boundary problems
- Makoto Sakai, Regularity of free boundaries in two dimensions
- D. Kinderlehrer, L. Nirenberg, Regularity in free boundary problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.