Smoothness and analyticity of free boundaries in variational inequalities

L. A. Caffarelli; N. M. Rivière

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1976)

  • Volume: 3, Issue: 2, page 289-310
  • ISSN: 0391-173X

How to cite

top

Caffarelli, L. A., and Rivière, N. M.. "Smoothness and analyticity of free boundaries in variational inequalities." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.2 (1976): 289-310. <http://eudml.org/doc/83720>.

@article{Caffarelli1976,
author = {Caffarelli, L. A., Rivière, N. M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {289-310},
publisher = {Scuola normale superiore},
title = {Smoothness and analyticity of free boundaries in variational inequalities},
url = {http://eudml.org/doc/83720},
volume = {3},
year = {1976},
}

TY - JOUR
AU - Caffarelli, L. A.
AU - Rivière, N. M.
TI - Smoothness and analyticity of free boundaries in variational inequalities
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1976
PB - Scuola normale superiore
VL - 3
IS - 2
SP - 289
EP - 310
LA - eng
UR - http://eudml.org/doc/83720
ER -

References

top
  1. [1] H. Brézis - D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. Jour., 23, 9 (March 1974), pp. 831-844. Zbl0278.49011MR361436
  2. [2] L.A. Caffarelli - N.M. Rivière, On the rectifiability of domains with finite perimeter, Ann. Scuola Norm. Sup. Pisa, same issue, pp. 177-186. Zbl0362.49031MR410539
  3. [3] J. Frehse, On the regularity of the solutions of a second order variational inequality, Boll. U.M.I., IV, 6 (1972), pp. 312-315. Zbl0261.49021MR318650
  4. [4] A. Friedman - K. Kinderlehrer, A one phase Stefan problem, to appear. Zbl0334.49002
  5. [5] D. Kinderlehrer, The coincidence set of solutions of certain variational inequalities, Arch. Rat. Mech. and Anal., 40, 3 (1971), pp. 321-250. Zbl0219.49014MR271799
  6. [6] D. Kinderlehrer, How a minimal surface leaves an obstacle, Acta. Math., 430 (1973), pp. 221-242. Zbl0268.49050MR419997
  7. [7] D. Kinderlehrer, The free boundary determined by the solution to a differential equation, Indiana Journ. of Math., to appear. Zbl0336.35031MR393807
  8. [8] H. Lewy, On minimal surfaces with partly free boundary, Comm. Pure and Appl. Math., 4 (1951), pp. 1-13. MR52711
  9. [9] H. Lewy, On the reflection laws of second order differential equations in two independent variables, Bull. Amer. Math. Soc., 65 (1959), pp. 37-58. Zbl0089.08001MR104048
  10. [10] H. Lewy, On the nature of the boundary separating two domains with different regimes, to appear. 
  11. [11] H. Lewy - G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure and Appl. Math., 22 (1969), pp. 153-188. Zbl0167.11501MR247551
  12. [12] A. McNabb, Strong comparison theorems for elliptic equations of second order, J. Math. Mech., 10 (1961), pp. 431-440. Zbl0106.29903MR142881

Citations in EuDML Documents

top
  1. L. A. Caffarelli, N. M. Rivière, On the rectifiability of domains with finite perimeter
  2. David G. Schaeffer, Some examples of singularities in a free boundary
  3. Tsuan Wu Ting, Elastic-plastic torsion problem over multiply connected domains
  4. Jean Dolbeault, Régis Monneau, Convexity estimates for nonlinear elliptic equations and application to free boundary problems
  5. Makoto Sakai, Regularity of free boundaries in two dimensions
  6. D. Kinderlehrer, L. Nirenberg, Regularity in free boundary problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.