Twisted sheaves on complex spaces

Aldo Andreotti; Constantin Bănică

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1980)

  • Volume: 7, Issue: 1, page 1-27
  • ISSN: 0391-173X

How to cite

top

Andreotti, Aldo, and Bănică, Constantin. "Twisted sheaves on complex spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.1 (1980): 1-27. <http://eudml.org/doc/83830>.

@article{Andreotti1980,
author = {Andreotti, Aldo, Bănică, Constantin},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {twisted sheaves},
language = {eng},
number = {1},
pages = {1-27},
publisher = {Scuola normale superiore},
title = {Twisted sheaves on complex spaces},
url = {http://eudml.org/doc/83830},
volume = {7},
year = {1980},
}

TY - JOUR
AU - Andreotti, Aldo
AU - Bănică, Constantin
TI - Twisted sheaves on complex spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1980
PB - Scuola normale superiore
VL - 7
IS - 1
SP - 1
EP - 27
LA - eng
KW - twisted sheaves
UR - http://eudml.org/doc/83830
ER -

References

top
  1. [1] A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves, Bull. Soc. Math. France, 91 (1963), pp. 1-38. Zbl0113.06403MR152674
  2. [2] A. Andreotti - C. BăNICă, Relative duality on complex spaces, Rev. Roumaine Math. Pures, n. 9 (1975) and n. 9 (1976). Zbl0319.32016
  3. [3] A. Andreotti - H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), pp. 193-259. Zbl0106.05501MR150342
  4. [4] A. Andreotti - A. Kas, Duality on complex spaces, Ann. Scuola Norm. Sup. Pisa, 27 (1973), pp. 187-263. Zbl0278.32007MR425160
  5. [5] A. Andreotti - Y.T. Siu, Projective embedding of pseudoconcave spaces, Ann. Scuola Norm. Sup. Pisa, 3, 24 (1970), pp. 231-278. Zbl0195.36901MR265633
  6. [6] A. Andreotti - G. Tomassini, Some remarks on pseudoconcave manifolds, Essays in topology and related topics, Mémoires dédiés à G. de Rham (1970), pp. 85-104. Zbl0192.58102MR265632
  7. [7] A. Andreotti - G. Tomassini, A remark on the vanishing of certain cohomology groups, Compositio Math., 21 (1969), pp. 417-430. Zbl0186.14101MR261031
  8. [8] C Bănică, Le complété formel d'un espace analytique le long d'un sous-espace; un théorème de comparaison, Manuseripta Math., 6 (1972), pp. 207-244. Zbl0231.32004MR301231
  9. [9] C Bănică - V. Br, Hilbert-Samuel polynomials of a proper morphism, Math. Z., 158 (1978), pp. 107-124. Zbl0353.32014MR492371
  10. [10] S. Coen, Sul rango dei fasci coerenti, Boll. Un. Mat. Ital., 22 (1967), pp. 373-382. Zbl0164.38202MR227467
  11. [11] S. Eto - H. Kazama - K. Watanabe, On strongly q-pseudoconvex spaces with positive vector bundles, Mem. Fac. Sci., Kyushu Univ., ser. A, 28 (1974) pp. 135-146. Zbl0297.32012MR364681
  12. [12] O. Forster, Zur Theorie des Steinschen Algebren und Moduln, Math. Z., 97 (1967), pp. 376-405. Zbl0148.32203MR213611
  13. [13] H. Grauert - R. Remmert, Espaces analytiquement complets, C. R. Acad. Sci. Paris, 245 (1957), pp. 882-885. Zbl0083.30701MR92193
  14. [14] H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Struckturen, Publ. Inst. Hautes Études Sci. Publ. Math., n. 5 (1960). Zbl0158.32901MR121814
  15. [15] A. Gronthendieck, Séminaire de géométrie algébrique - II, North-Holland Publication Company, Amsterdam (1968). 
  16. [16] A. Grothendieck - J. Dieudonné, Eléments de géométrie algébrique, Ch. III, Publ. Inst. Hautes Études Sci. Publ. Math., n. 11, 17. Zbl0203.23301
  17. [17] S. Kleiman, Towards a numerical theory of ampleness, Ann. of Math., 84 (1966), pp. 293-344. Zbl0146.17001MR206009
  18. [18] B.G. Moishezon, Algebraic varieties and compact complex spaces, Actes, Congrès International Math., tome2, (1970). Zbl0232.14004MR425189
  19. [19] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Studies, n. 59, Princeton (1966). Zbl0187.42701MR209285
  20. [20] C.P. Ramanujam, On a geometric interpretation of multiplicity, Invent. Math., 22 (1973) pp. 63-67. Zbl0265.14004MR354663
  21. [21] J.P. Ramis, Théorèmes de séparation et de f initude pour l'homologie et la cohomologie des espaces (p, q)-convexes-concaves, Ann. Scuola Norm. Sup. Pisa, 27 (1973), pp. 933-997. Zbl0327.32001MR374477
  22. [22] J.P. Ramis - G. Ruget, Complexe dualisant et théorèmes de dualité en Géométrie Analytique Complexe, Publ. Inst. Hautes Études Sci. Publ. Math., 38 (1971), pp. 77-91. Zbl0206.25006MR279338
  23. [23] J.P. Ramis - G. Ruget, Résidus et dualité,Invent. Math., 26 (1974), pp. 89-131. Zbl0304.32007MR352522
  24. [24] J.P. Serre, Faisceaux algébriques cohérents, Ann. of Math., 61 (1955), pp. 197-278. Zbl0067.16201MR68874
  25. [25] J.P. Serre, Algèbre locale, Multiplicités, Lecture Notes Math., n. 11, Springer-Verlag (1965). Zbl0142.28603MR201468
  26. [26] Y.T. Siu - G. Trautmann, Gap-sheaves and extension of coherent analytic sub-sheaves, Lecture Notes Math., n. 172, Springer-Verlag (1971). Zbl0208.10403MR287033
  27. [27] M. Stoia, Multimile singulare ale fascicolelor algebrice coerente, Stud. Cerc. Mat., 30 (1978) pp. 295-337. Zbl0385.14001
  28. [28] O. Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math., 76 (1962) pp. 560-615. Zbl0124.37001MR141668

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.