Duality on complex spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)
- Volume: 27, Issue: 2, page 187-263
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAndreotti, Aldo, and Kas, Arnold. "Duality on complex spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1973): 187-263. <http://eudml.org/doc/83634>.
@article{Andreotti1973,
author = {Andreotti, Aldo, Kas, Arnold},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {187-263},
publisher = {Scuola normale superiore},
title = {Duality on complex spaces},
url = {http://eudml.org/doc/83634},
volume = {27},
year = {1973},
}
TY - JOUR
AU - Andreotti, Aldo
AU - Kas, Arnold
TI - Duality on complex spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 187
EP - 263
LA - eng
UR - http://eudml.org/doc/83634
ER -
References
top- [1] A. Andreotti and H. Grauert, Théorèmes definitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Francev. 90 (1962) p. 193-259. Zbl0106.05501MR150342
- [2] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. I. H. E. S. (1965) n. 25. Zbl0138.06604MR175148
- [3] C. Banica and O. Stanasila, Sur la profondeur d'un faisceau analytique cohérent sur un espace de Stein, C. R. Ac. Sci. Paris v. 269 (1969) p. 636-639. Zbl0182.11103MR254270
- [4] G.E. Bredon, Sheaf theory, McGraw Hill, New York, 1967. Zbl0158.20505MR221500
- [5] A. Cassa, Coomologia separate sulle varietà analitiche complesse, Ann. Sc. Nor. Pisa, v. 25 (1971) p. 291-323. Zbl0232.46010MR357851
- [6] R. Godement, Théorie des faisceaux, Hermann, Paris, 1958. Zbl0080.16201MR102797
- [7] R.C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc.Englewood Cliffs, N. J.1965. Zbl0141.08601MR180696
- [8] A. Grothendieck, Espaces vectoriels topologiques, Societad Mat. Sao Paolo, 1958. Zbl0058.33401
- [9] J.L. Kelley and T. Namioka, Linear topological vectors spaces, D. Van Nostrand, Princeton, 1963. Zbl0318.46001
- [10] G. Köthe, Topologische lineare Räume, Springer, Berlin, 1960. Zbl0093.11901MR130551
- [11] R. Kultze, Dualität von Homologie und Cohomologiegruppen, Arch. Math. v. 10 (1959) Zbl0178.56902MR114205
- [12] B. Malgrange.Systèmes differentiels a coefficients constants, Sem. Bourbaki265-01 (1962).
- [13] A. Martineau, Sur le théorème du graphe fermé, C. R. Ac. Sci Paris, n. 263 (1966) p. 870-871. Zbl0151.19203MR206677
- [14] R. Narasimhan, Introduction to the theory of analytic spaces, Springer Lecture Notes25, 1966. Zbl0168.06003MR217337
- [15] H.J. Reiffen.Riemannische Hebbarkeitssätze für Cohomologieklassen mit kompaktem Träger, Math. Ann, v. 164 (1966) p 272-273. Zbl0142.41102MR197779
- [16] D.A. Raikov.Double closed-graph theorem for topologioal linear spaces, Sibirski Mat. Zhurnal v. 7 (1966) p. 353-372. Zbl0171.10701MR198196
- [17] J.P. Ramis and G. Ruget, Complexes dualisants et théorème de dualité en géometrie analytique complexe, Publ. I. H. E. S. (1970) n. 38 p. 77-91. Zbl0206.25006MR279338
- [18] H.H. Schaefer, Topological vector spaces, MacMillan, New York, 1966. Zbl0141.30503MR193469
- [19] L. Schwartz, Sur le théorème du graphe fermé, C. R. Ac. Sci. Paris v. 263 (1966) p. 602-605. Zbl0151.19202MR206676
- [20] J.P. Serre, Un théorème de dualité, Comm. Math. Helvetici, v. 29 (1955) pp. 9-26. Zbl0067.16101MR67489
- [21] J.P. Serre, Faisceaux algébriques cohérents, Annals of Math. v. 61 (1955) pp.197-278. Zbl0067.16201MR68874
- [22] S e Silva, Su certe classi di spazi convessi importanti per le applicazioni, Rend. Mat. v. 5 (1955) p. 388-410. Zbl0064.35801
- [23] K. Souminen, Duality for coherent sheaves on analytic manifolds, An. Ac. Fennicae (1968). Zbl0185.15205
- [24] F. Treves, Topological vector spaces distributions and kernels, Academic press, New York, 1967. Zbl0171.10402MR225131
Citations in EuDML Documents
top- A. Fabiano, P. Pietramala, Sur la convexité holomorphe. Théorie locale
- Mihnea Coltoiu, The Levi problem for cohomology classes
- Guido Lupacciolu, Holomorphic extension to open hulls
- Aldo Andreotti, Constantin Banica, Twisted sheaves on complex spaces
- Aldo Andreotti, Arnold Kas, Serre duality on complex analytic spaces
- C. Denson Hill, M. Nacinovich, Duality and distribution cohomology of manifolds
- Aldo Andreotti, Constantin Bănică, Twisted sheaves on complex spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.