Convexity estimates for nonlinear elliptic equations and application to free boundary problems
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 6, page 903-926
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDolbeault, Jean, and Monneau, Régis. "Convexity estimates for nonlinear elliptic equations and application to free boundary problems." Annales de l'I.H.P. Analyse non linéaire 19.6 (2002): 903-926. <http://eudml.org/doc/78566>.
@article{Dolbeault2002,
author = {Dolbeault, Jean, Monneau, Régis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasi-linear elliptic equations; free boundary problem; gradient estimates; curvature of level sets},
language = {eng},
number = {6},
pages = {903-926},
publisher = {Elsevier},
title = {Convexity estimates for nonlinear elliptic equations and application to free boundary problems},
url = {http://eudml.org/doc/78566},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Dolbeault, Jean
AU - Monneau, Régis
TI - Convexity estimates for nonlinear elliptic equations and application to free boundary problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 6
SP - 903
EP - 926
LA - eng
KW - quasi-linear elliptic equations; free boundary problem; gradient estimates; curvature of level sets
UR - http://eudml.org/doc/78566
ER -
References
top- [1] Alt H.W., Phillips D., A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math.368 (1986) 63-107. Zbl0598.35132MR850615
- [2] Bonnet A., Monneau R., Distribution of vortices in a type II superconductor as a free boundary problem: Existence and regularity via Nash–Moser theory, Interfaces and Free Boundaries2 (2000) 181-200. Zbl0989.35146MR1760411
- [3] Brézis H., Kinderlehrer D., The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J.23 (9) (1974) 831-844. Zbl0278.49011MR361436
- [4] Caffarelli L.A., Compactness method in free boundary problems, Comm. P.D.E.5 (4) (1980) 427-448. Zbl0437.35070MR567780
- [5] Caffarelli L.A., Rivière N.M., Smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa, serie IV3 (1975) 289-310. Zbl0363.35009MR412940
- [6] Caffarelli L.A., Salazar J., Solutions of fully nonlinear elliptic equations with patches of zero gradient: existence, regularity and convexity of level curves, Trans. Amer. Math. Soc.354 (8) (2002) 3095-3115. Zbl0992.35101MR1897393
- [7] Caffarelli L.A., Spruck J., Convexity properties of solutions to some classical variational problems, Comm. P.D.E.7 (11) (1982) 1337-1379. Zbl0508.49013MR678504
- [8] Diaz J.I., Kawohl B., On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings, J. Math. Anal. Appl.177 (1993) 263-286. Zbl0802.35087MR1224819
- [9] Dolbeault P., Analyse Complexe, Collection Maîtrise de Mathematiques Pures, Masson, 1990. Zbl0694.30001MR1059456
- [10] Dolbeault J., Monneau R., Estimations de convexité pour des équations elliptiques non-linéaires et application à des problèmes de frontière libre [Convexity estimates for nonlinear elliptic equations and application to free boundary problems], C. R. Acad. Sci. Paris Sér. I331 (2000) 771-776. Zbl0965.35066MR1807187
- [11] Frehse J., On the regularity of the solution of a second order variational inequality, Boll. U.M.I.6 (4) (1972) 312-315. Zbl0261.49021MR318650
- [12] Friedman A., Variational Principles and Free Boundary Problems, Pure and Applied Mathematics, Wiley-Interscience, 1982. Zbl0564.49002MR679313
- [13] Friedman A., Phillips D., The free boundary of a semilinear elliptic equation, Trans. Amer. Math. Soc.282 (1984) 153-182. Zbl0552.35079MR728708
- [14] Hamilton R.S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc.7 (1982) 65-222. Zbl0499.58003MR656198
- [15] Henrot A., Shahgholian H., Convexity of free boundaries with Bernoulli type boundary conditions, Nonlinear Analysis T.M.A.28 (5) (1997). Zbl0863.35117MR1422187
- [16] Henrot A., Shahgholian H., Existence of classical solutions to a free boundary problem for the p-Laplace operator: (I) the exterior convex case, J. Reine Angew. Math.521 (2000) 85-97. Zbl0955.35078MR1752296
- [17] Henrot A., Shahgholian H., Existence of classical solutions to a free boundary problem for the p-Laplace operator: (II) the interior convex case, Indiana Univ. Math. J.49 (1) (2000) 311-323. Zbl0977.35148MR1777029
- [18] Kaup B., Kaup L., Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin, 1983. Zbl0528.32001MR716497
- [19] Kawohl B., When are solutions to nonlinear elliptic boundary value problems convex?, Comm. P.D.E.10 (1985) 1213-1225. Zbl0587.35026MR806439
- [20] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., 1150, Springer, 1985. Zbl0593.35002MR810619
- [21] Kawohl B., On the convexity and symmetry of solutions to an elliptic free boundary problem, J. Austral. Math. Soc. (Series A)42 (1987) 57-68. Zbl0619.35051MR862721
- [22] Kawohl B., On the convexity of level sets for elliptic and parabolic exterior boundary value problems, in: Potential Theory, Prague, 1987, Plenum, New York, 1988, pp. 153-159. Zbl0685.35023MR986290
- [23] Kinderlehrer D., Nirenberg L., Regularity in free boundary problems, Bull. Amer. Math. Soc.7 (1982) 65-222. Zbl0352.35023
- [24] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. Zbl0457.35001MR567696
- [25] Laurence P., Stredulinsky E., Existence of regular solutions with levels for semilinear elliptic equations with nonmonotone L1 nonlinearities, Indiana Univ. Math. J.39 (4) (1990) 1081-1114. Zbl0798.35167MR1087186
- [26] R. Monneau, Problèmes de frontières libres, EDP elliptiques non linéaires et applications en combustion, supraconductivité et élasticité, Thèse de doctorat de l'Université de Paris VI, 1999.
- [27] Morrey C.B., Multiple Integrals in the Calculus of Variations, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, 130, Springer-Verlag, New York, 1966. Zbl0142.38701MR202511
- [28] Rodrigues J.F., Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam, 1987. Zbl0606.73017MR880369
- [29] Schaeffer D.G., One-sided estimates for the curvature of the free boundary in the obstacle problem, Adv. in Math.24 (1977) 78-98. Zbl0354.35075MR448197
- [30] Talenti G., Some estimates of solutions to Monge–Ampère type equations in dimension two, Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV. Ser.8 (1981) 183-230. Zbl0467.35044MR623935
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.