Convexity estimates for nonlinear elliptic equations and application to free boundary problems

Jean Dolbeault; Régis Monneau

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 6, page 903-926
  • ISSN: 0294-1449

How to cite

top

Dolbeault, Jean, and Monneau, Régis. "Convexity estimates for nonlinear elliptic equations and application to free boundary problems." Annales de l'I.H.P. Analyse non linéaire 19.6 (2002): 903-926. <http://eudml.org/doc/78566>.

@article{Dolbeault2002,
author = {Dolbeault, Jean, Monneau, Régis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasi-linear elliptic equations; free boundary problem; gradient estimates; curvature of level sets},
language = {eng},
number = {6},
pages = {903-926},
publisher = {Elsevier},
title = {Convexity estimates for nonlinear elliptic equations and application to free boundary problems},
url = {http://eudml.org/doc/78566},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Dolbeault, Jean
AU - Monneau, Régis
TI - Convexity estimates for nonlinear elliptic equations and application to free boundary problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 6
SP - 903
EP - 926
LA - eng
KW - quasi-linear elliptic equations; free boundary problem; gradient estimates; curvature of level sets
UR - http://eudml.org/doc/78566
ER -

References

top
  1. [1] Alt H.W., Phillips D., A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math.368 (1986) 63-107. Zbl0598.35132MR850615
  2. [2] Bonnet A., Monneau R., Distribution of vortices in a type II superconductor as a free boundary problem: Existence and regularity via Nash–Moser theory, Interfaces and Free Boundaries2 (2000) 181-200. Zbl0989.35146MR1760411
  3. [3] Brézis H., Kinderlehrer D., The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J.23 (9) (1974) 831-844. Zbl0278.49011MR361436
  4. [4] Caffarelli L.A., Compactness method in free boundary problems, Comm. P.D.E.5 (4) (1980) 427-448. Zbl0437.35070MR567780
  5. [5] Caffarelli L.A., Rivière N.M., Smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa, serie IV3 (1975) 289-310. Zbl0363.35009MR412940
  6. [6] Caffarelli L.A., Salazar J., Solutions of fully nonlinear elliptic equations with patches of zero gradient: existence, regularity and convexity of level curves, Trans. Amer. Math. Soc.354 (8) (2002) 3095-3115. Zbl0992.35101MR1897393
  7. [7] Caffarelli L.A., Spruck J., Convexity properties of solutions to some classical variational problems, Comm. P.D.E.7 (11) (1982) 1337-1379. Zbl0508.49013MR678504
  8. [8] Diaz J.I., Kawohl B., On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings, J. Math. Anal. Appl.177 (1993) 263-286. Zbl0802.35087MR1224819
  9. [9] Dolbeault P., Analyse Complexe, Collection Maîtrise de Mathematiques Pures, Masson, 1990. Zbl0694.30001MR1059456
  10. [10] Dolbeault J., Monneau R., Estimations de convexité pour des équations elliptiques non-linéaires et application à des problèmes de frontière libre [Convexity estimates for nonlinear elliptic equations and application to free boundary problems], C. R. Acad. Sci. Paris Sér. I331 (2000) 771-776. Zbl0965.35066MR1807187
  11. [11] Frehse J., On the regularity of the solution of a second order variational inequality, Boll. U.M.I.6 (4) (1972) 312-315. Zbl0261.49021MR318650
  12. [12] Friedman A., Variational Principles and Free Boundary Problems, Pure and Applied Mathematics, Wiley-Interscience, 1982. Zbl0564.49002MR679313
  13. [13] Friedman A., Phillips D., The free boundary of a semilinear elliptic equation, Trans. Amer. Math. Soc.282 (1984) 153-182. Zbl0552.35079MR728708
  14. [14] Hamilton R.S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc.7 (1982) 65-222. Zbl0499.58003MR656198
  15. [15] Henrot A., Shahgholian H., Convexity of free boundaries with Bernoulli type boundary conditions, Nonlinear Analysis T.M.A.28 (5) (1997). Zbl0863.35117MR1422187
  16. [16] Henrot A., Shahgholian H., Existence of classical solutions to a free boundary problem for the p-Laplace operator: (I) the exterior convex case, J. Reine Angew. Math.521 (2000) 85-97. Zbl0955.35078MR1752296
  17. [17] Henrot A., Shahgholian H., Existence of classical solutions to a free boundary problem for the p-Laplace operator: (II) the interior convex case, Indiana Univ. Math. J.49 (1) (2000) 311-323. Zbl0977.35148MR1777029
  18. [18] Kaup B., Kaup L., Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin, 1983. Zbl0528.32001MR716497
  19. [19] Kawohl B., When are solutions to nonlinear elliptic boundary value problems convex?, Comm. P.D.E.10 (1985) 1213-1225. Zbl0587.35026MR806439
  20. [20] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., 1150, Springer, 1985. Zbl0593.35002MR810619
  21. [21] Kawohl B., On the convexity and symmetry of solutions to an elliptic free boundary problem, J. Austral. Math. Soc. (Series A)42 (1987) 57-68. Zbl0619.35051MR862721
  22. [22] Kawohl B., On the convexity of level sets for elliptic and parabolic exterior boundary value problems, in: Potential Theory, Prague, 1987, Plenum, New York, 1988, pp. 153-159. Zbl0685.35023MR986290
  23. [23] Kinderlehrer D., Nirenberg L., Regularity in free boundary problems, Bull. Amer. Math. Soc.7 (1982) 65-222. Zbl0352.35023
  24. [24] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. Zbl0457.35001MR567696
  25. [25] Laurence P., Stredulinsky E., Existence of regular solutions with levels for semilinear elliptic equations with nonmonotone L1 nonlinearities, Indiana Univ. Math. J.39 (4) (1990) 1081-1114. Zbl0798.35167MR1087186
  26. [26] R. Monneau, Problèmes de frontières libres, EDP elliptiques non linéaires et applications en combustion, supraconductivité et élasticité, Thèse de doctorat de l'Université de Paris VI, 1999. 
  27. [27] Morrey C.B., Multiple Integrals in the Calculus of Variations, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, 130, Springer-Verlag, New York, 1966. Zbl0142.38701MR202511
  28. [28] Rodrigues J.F., Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam, 1987. Zbl0606.73017MR880369
  29. [29] Schaeffer D.G., One-sided estimates for the curvature of the free boundary in the obstacle problem, Adv. in Math.24 (1977) 78-98. Zbl0354.35075MR448197
  30. [30] Talenti G., Some estimates of solutions to Monge–Ampère type equations in dimension two, Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV. Ser.8 (1981) 183-230. Zbl0467.35044MR623935

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.