A rotation invariant differential equation for vector fields

H. M. Reimann

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)

  • Volume: 9, Issue: 1, page 159-174
  • ISSN: 0391-173X

How to cite

top

Reimann, H. M.. "A rotation invariant differential equation for vector fields." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.1 (1982): 159-174. <http://eudml.org/doc/83874>.

@article{Reimann1982,
author = {Reimann, H. M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {rotation invariant operator; Dirichlet-problem; symmetric tensor fields with vanishing trace; series of spherical harmonics},
language = {eng},
number = {1},
pages = {159-174},
publisher = {Scuola normale superiore},
title = {A rotation invariant differential equation for vector fields},
url = {http://eudml.org/doc/83874},
volume = {9},
year = {1982},
}

TY - JOUR
AU - Reimann, H. M.
TI - A rotation invariant differential equation for vector fields
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 1
SP - 159
EP - 174
LA - eng
KW - rotation invariant operator; Dirichlet-problem; symmetric tensor fields with vanishing trace; series of spherical harmonics
UR - http://eudml.org/doc/83874
ER -

References

top
  1. [1] L.V. Ahlfors, Invariant operators and integral representations in hyperbolic space, Math. Scand., 36 (1975), pp. 27-43. Zbl0313.31009MR402036
  2. [2] L.V. Ahlfors, Quasiconformal deformations and mappings in Rn, J. Analyse Math., 30 (1976), pp. 74-97. Zbl0338.30017MR492238
  3. [3] P. Debye, Zur Theorie der spezifischen Wärmen, Ann. Physik, IV, 39 (1912), pp.789-839. Zbl43.1037.02JFM43.1037.02
  4. [4] A. Korányi, Some applications of Gelfand pairs in classical analysis, CIME, 1980. 
  5. [5] A. Korányi - S. Vagi, Group theoretic remarks on Riesz systems in balls, to appear. Zbl0497.43005
  6. [6] D.A. Levine, Systems of singular integral operators on spheres, Trans. Amer. Math. Soc., 144 (1969), pp. 493-522. Zbl0196.15803MR412743
  7. [7] S.G. Mihlin, Higher-dimensional singular integrals and integral equations, Fizmatgiz, Moscow, 1962; English translation: Pergamon Press, New York, 1965. MR155165
  8. [8] H. Weyl, Eigenschwingungen eines beliebig gestalteten elastischen Körpers, Rend. Circ. Mat. Palermo, 39 (1915), pp. 1-50 or Selecta Hermann Weyl, Birkhäuser, Basel, 1956. Zbl45.1016.02JFM45.1016.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.