Laplace type operators: Dirichlet problem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 1, page 53-80
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topKozł, Wojciech. "Laplace type operators: Dirichlet problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (2007): 53-80. <http://eudml.org/doc/272295>.
@article{Kozł2007,
abstract = {We investigate Laplace type operators in the Euclidean space. We give a purely algebraic proof of the theorem on existence and uniqueness (in the space of polynomial forms) of the Dirichlet boundary problem for a Laplace type operator and give a method of determining the exact solution to that problem. Moreover, we give a decomposition of the kernel of a Laplace type operator into $\mathsf \{SO\}(n)$-irreducible subspaces.},
author = {Kozł, Wojciech},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Laplace type operator; Dirichlet boundary value problem; existence of solutions},
language = {eng},
number = {1},
pages = {53-80},
publisher = {Scuola Normale Superiore, Pisa},
title = {Laplace type operators: Dirichlet problem},
url = {http://eudml.org/doc/272295},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Kozł, Wojciech
TI - Laplace type operators: Dirichlet problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 1
SP - 53
EP - 80
AB - We investigate Laplace type operators in the Euclidean space. We give a purely algebraic proof of the theorem on existence and uniqueness (in the space of polynomial forms) of the Dirichlet boundary problem for a Laplace type operator and give a method of determining the exact solution to that problem. Moreover, we give a decomposition of the kernel of a Laplace type operator into $\mathsf {SO}(n)$-irreducible subspaces.
LA - eng
KW - Laplace type operator; Dirichlet boundary value problem; existence of solutions
UR - http://eudml.org/doc/272295
ER -
References
top- [1] L. V. Ahlfors, Quasiconformal deformations and mappings in , J. Anal. Math.30 (1976), 74–97. Zbl0338.30017MR492238
- [2] S. Axler, P. Bourdon and W. Ramey, “Harmonic Function Theory”, Springer-Verlag, New York, 2001. Zbl0765.31001MR1805196
- [3] R. R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics, Enseign. Math.14 (1969), 121–175. Zbl0174.18902MR255877
- [4] G. B. FollandHarmonic analysis of the de Rham complex on the sphere, J. Reine Angew. Math.398 (1989), 130–143. Zbl0671.58036MR998476
- [5] I. Kolář, P. W. Michor and J. Slovák, “Natural Operations in Differential Geometry”, Springer-Verlag, Berlin-Heidelberg, 1993. Zbl0782.53013MR1202431
- [6] A. Korányi and S. Vági, Group theoretic remarks on Riesz system on balls, Proc. Amer. Math. Soc.85 (1982), 200–205. Zbl0497.43005MR652442
- [7] N. V. Krylov, “Lectures on Elliptic and Parabolic Equations in Hölder Spaces”, Graduate Studies in Mathematics, Vol. 12, American Mathematical Society, Providence, RI, 1996. Zbl0865.35001MR1406091
- [8] A. Lipowski, Boundary problems for the Ahlfors operator, (in Polish), Ph.D. Thesis, Łódź University, (1996), 1–55.
- [9] A. Pierzchalski, “Geometry of Quasiconformal Deformations of Riemannian Manifolds”, Łódź University Press, 1997.
- [10] A. Pierzchalski, Ricci curvature and quasiconformal deformations of a Riemannian manifold, Manuscripta Math.66 (1989), 113–127. Zbl0698.53021MR1027303
- [11] H. M. Reimann, Rotation invariant differential equation for vector fields, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 9, (1982), 160–174. Zbl0491.35027MR664106
- [12] E. M. Stein and G. Weiss, “Fourier Analysis on Euclidean Spaces”, Princeton University Press, 1971. Zbl0232.42007MR304972
- [13] A. Strasburger, Differential operators of gradient type associated with spherical harmonics, Ann. Polon. Math.53 (1991), 161–183. Zbl0734.43007MR1109586
- [14] H. Weyl, Eigenschwingungen eines beliebig gestatleten elastischen Korpers, Rend. Circ. Mat. Palermo39 (1915), 1–50. Zbl45.1016.02JFM45.1016.02
- [15] K. Yano, “Integral Formulas in Riemannian Geometry”, Marcel Dekker INC, New York, 1970. Zbl0213.23801MR284950
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.