Laplace type operators: Dirichlet problem

Wojciech Kozł

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 1, page 53-80
  • ISSN: 0391-173X

Abstract

top
We investigate Laplace type operators in the Euclidean space. We give a purely algebraic proof of the theorem on existence and uniqueness (in the space of polynomial forms) of the Dirichlet boundary problem for a Laplace type operator and give a method of determining the exact solution to that problem. Moreover, we give a decomposition of the kernel of a Laplace type operator into 𝖲𝖮 ( n ) -irreducible subspaces.

How to cite

top

Kozł, Wojciech. "Laplace type operators: Dirichlet problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (2007): 53-80. <http://eudml.org/doc/272295>.

@article{Kozł2007,
abstract = {We investigate Laplace type operators in the Euclidean space. We give a purely algebraic proof of the theorem on existence and uniqueness (in the space of polynomial forms) of the Dirichlet boundary problem for a Laplace type operator and give a method of determining the exact solution to that problem. Moreover, we give a decomposition of the kernel of a Laplace type operator into $\mathsf \{SO\}(n)$-irreducible subspaces.},
author = {Kozł, Wojciech},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Laplace type operator; Dirichlet boundary value problem; existence of solutions},
language = {eng},
number = {1},
pages = {53-80},
publisher = {Scuola Normale Superiore, Pisa},
title = {Laplace type operators: Dirichlet problem},
url = {http://eudml.org/doc/272295},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Kozł, Wojciech
TI - Laplace type operators: Dirichlet problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 1
SP - 53
EP - 80
AB - We investigate Laplace type operators in the Euclidean space. We give a purely algebraic proof of the theorem on existence and uniqueness (in the space of polynomial forms) of the Dirichlet boundary problem for a Laplace type operator and give a method of determining the exact solution to that problem. Moreover, we give a decomposition of the kernel of a Laplace type operator into $\mathsf {SO}(n)$-irreducible subspaces.
LA - eng
KW - Laplace type operator; Dirichlet boundary value problem; existence of solutions
UR - http://eudml.org/doc/272295
ER -

References

top
  1. [1] L. V. Ahlfors, Quasiconformal deformations and mappings in n , J. Anal. Math.30 (1976), 74–97. Zbl0338.30017MR492238
  2. [2] S. Axler, P. Bourdon and W. Ramey, “Harmonic Function Theory”, Springer-Verlag, New York, 2001. Zbl0765.31001MR1805196
  3. [3] R. R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics, Enseign. Math.14 (1969), 121–175. Zbl0174.18902MR255877
  4. [4] G. B. FollandHarmonic analysis of the de Rham complex on the sphere, J. Reine Angew. Math.398 (1989), 130–143. Zbl0671.58036MR998476
  5. [5] I. Kolář, P. W. Michor and J. Slovák, “Natural Operations in Differential Geometry”, Springer-Verlag, Berlin-Heidelberg, 1993. Zbl0782.53013MR1202431
  6. [6] A. Korányi and S. Vági, Group theoretic remarks on Riesz system on balls, Proc. Amer. Math. Soc.85 (1982), 200–205. Zbl0497.43005MR652442
  7. [7] N. V. Krylov, “Lectures on Elliptic and Parabolic Equations in Hölder Spaces”, Graduate Studies in Mathematics, Vol. 12, American Mathematical Society, Providence, RI, 1996. Zbl0865.35001MR1406091
  8. [8] A. Lipowski, Boundary problems for the Ahlfors operator, (in Polish), Ph.D. Thesis, Łódź University, (1996), 1–55. 
  9. [9] A. Pierzchalski, “Geometry of Quasiconformal Deformations of Riemannian Manifolds”, Łódź University Press, 1997. 
  10. [10] A. Pierzchalski, Ricci curvature and quasiconformal deformations of a Riemannian manifold, Manuscripta Math.66 (1989), 113–127. Zbl0698.53021MR1027303
  11. [11] H. M. Reimann, Rotation invariant differential equation for vector fields, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 9, (1982), 160–174. Zbl0491.35027MR664106
  12. [12] E. M. Stein and G. Weiss, “Fourier Analysis on Euclidean Spaces”, Princeton University Press, 1971. Zbl0232.42007MR304972
  13. [13] A. Strasburger, Differential operators of gradient type associated with spherical harmonics, Ann. Polon. Math.53 (1991), 161–183. Zbl0734.43007MR1109586
  14. [14] H. Weyl, Eigenschwingungen eines beliebig gestatleten elastischen Korpers, Rend. Circ. Mat. Palermo39 (1915), 1–50. Zbl45.1016.02JFM45.1016.02
  15. [15] K. Yano, “Integral Formulas in Riemannian Geometry”, Marcel Dekker INC, New York, 1970. Zbl0213.23801MR284950

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.