Canonical surfaces with p g = p a = 5 and K 2 = 10

Ciro Ciliberto

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)

  • Volume: 9, Issue: 2, page 287-336
  • ISSN: 0391-173X

How to cite

top

Ciliberto, Ciro. "Canonical surfaces with $p_g = p_a = 5$ and $K^2 = 10$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.2 (1982): 287-336. <http://eudml.org/doc/83883>.

@article{Ciliberto1982,
author = {Ciliberto, Ciro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {unirationality of moduli space; smooth complete surfaces of genus 5; canonical models; coarse moduli space; classes of birational equivalence; determinantal equations},
language = {eng},
number = {2},
pages = {287-336},
publisher = {Scuola normale superiore},
title = {Canonical surfaces with $p_g = p_a = 5$ and $K^2 = 10$},
url = {http://eudml.org/doc/83883},
volume = {9},
year = {1982},
}

TY - JOUR
AU - Ciliberto, Ciro
TI - Canonical surfaces with $p_g = p_a = 5$ and $K^2 = 10$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 2
SP - 287
EP - 336
LA - eng
KW - unirationality of moduli space; smooth complete surfaces of genus 5; canonical models; coarse moduli space; classes of birational equivalence; determinantal equations
UR - http://eudml.org/doc/83883
ER -

References

top
  1. [B] P. Bonnesen, Sur les series tineaires triplement infinies de courbes algébriques sur une surface algébrique, Bull. Acad. Royal Sci. Let. de Danemarque, 4 (1906). Zbl38.0647.02JFM38.0647.02
  2. [BE1] D.A. Buchsbaum - D. Eisenbud, What annihitates a moduleJ. Algebra, 47 (1977), pp. 231-243. Zbl0372.13002MR476736
  3. [BE2] D.A. Buchsbaum - D. Eisenbud, Some structure theorems for finite free resolutions, Adv. in Math., 12 (1979), pp. 84-139. Zbl0297.13014MR340240
  4. [BEA] A. Beauville, L'application canonique pour les surfaces de type general, Invent. Math., 55 (1979), pp. 121-140. Zbl0403.14006MR553705
  5. [C] C. Ciliberto, Canonical surfaces with pg = pa = 4 and K2 = 5, ..., 10, Duke Math. J., 48 (1981), pp. 1-37. Zbl0468.14011MR610180
  6. [CA] F. Catanese, On Severi's proof of the double point formula, Comm. Algebra, 7 (1978), pp. 763-773. Zbl0411.14016MR529319
  7. [CO] F. Conforto, Le superficie razionali, Zanichelli, Bologna (1939). Zbl0021.05306JFM65.0714.03
  8. [COM] A. Comessatti, Limiti di variabitita della dimensione e dell'ordine di una grn sopra una curva di dato genere, Atti Re. Ist. Veneto Sci. Lett. Arti, 74 (1915), pp. 1685-1709. JFM45.1359.02
  9. [E] F. Enriques, Le superficie algebriche, Zanichelli, Bologna (1949). Zbl0036.37102MR31770
  10. [F1] A. Franchetta, Sui punti doppi isolati delle superficie algebriche, Note I e II, Rend. Acc. Naz. Lincei Cl. Sc. Fis. Mat. Nat. (8) 1 (1946), pp. 49-57 and pp. 162-168. Zbl0061.33903
  11. [F2] A. Franchetta, Osservazioni sui punti doppi isolati delle superficie algebriche, Rend. Mat. Appl., 5 (1946), pp. 1-8. Zbl0061.33902MR21367
  12. [G] W. Groebner, Moderne algebrische Geometrie, Springer, Wien (1949). Zbl0033.12706
  13. [GA] F. Gaeta, Nuove ricerche sulle curve sghembe algebriche di residuate finito e sui gruppi di punti del piano, Ann. Mat. pura appl. (4) 31 (1950), pp. 1-61. Zbl0040.23001MR42744
  14. [GH] P.A. Griffiths - J. Harris, Principles of Algebraic Geometry, J. Wiley and Sons, New York (1978). Zbl0408.14001MR507725
  15. [GHE] G. Gherardelli, Sulle curve sghembe algebriche intersezioni complete di due superficie, Atti Accad. d'Italia, 4 (1943), pp. 128-132. Zbl0061.35802MR17958
  16. [GI] D. Gieseker, Global moduli for surfaces of general type, Invent. Math., 43 (1977), pp. 233-282. Zbl0389.14006MR498596
  17. [GR] S. Greco, Normal varieties, I.N.A.M. Inst. Math., 4, Academic Press, London-New York (1978). Zbl0431.14001MR556237
  18. [H] R. Hartshorne, Algebraic Geometry, Springer, New York-Heidelberg- Berlin (1977). Zbl0367.14001MR463157
  19. [I] J.-I. Igusa, Arithmetic genera of normal varieties in an algebraic family, Proc. Nat. Acad. Sci. USA, 41 (1955), pp. 34-37. Zbl0064.15204MR71114
  20. [K] M. Kuranishi, New proof for the existence of locally complete families structures, Proc. Conf. Compl. Analysis, Minneapolis, Springer (1965), pp. 142-154. Zbl0144.21102MR176496
  21. [KL] G. Kempf - D. Laksov, The determinantal formula of Schubert calculus, Acta Math., 132 (1974), pp. 153-162. Zbl0295.14023MR338006
  22. [MR] R.E. Mac Rae, On an application of the fitting invariants, J. Algebra, 2 (1965), 153-169 Zbl0196.31003MR178038
  23. [O] A. Ogus, Zariski's theorem on several linear systems, Proc. Amer. Math. Soc.., 37 (1973), pp. 59-62. Zbl0265.14001MR313259
  24. [P] R. Piene, A proof of Noether's formula for the arithmetic genus of an algebraic surface, Compositio Math., 38 (1978), pp. 113-119. Zbl0399.14004MR523267
  25. [PS] C. Peskine - L. Szpiro, Liaison des variétés algebriques, Invent. Math., 26 (1974), pp. 271-302. Zbl0298.14022MR364271
  26. [R] L. Roth, On the projective classification of surfaces, Proc. London Math. Soc. (2) 42 (1936), pp. 142-170. Zbl0015.26904JFM62.0770.05
  27. [S] E. Sernesi, L'unirazionatita della varietà dei moduli delle curve di genere dodiciAnn. Scuola Norm. Sup. Pisa, 8 (1981), pp. 405-439. Zbl0475.14024MR634856
  28. [SE1] F. Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni e ai suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, 25 (1901), pp. 33-51. Zbl32.0648.04JFM32.0648.04
  29. [SF 2] F. Severi, Sulle intersezioni delle varietà algebriche e sopra i loro caratteri e singolarità proiettive, Mem. Accad. Sci. Torino (2) 52 (1902), pp. 61-118. JFM34.0699.01
  30. [SF 3] F. Severi, Su alcune questioni di postulazione, Rend. Circ. Mat. Palermo17 (1903), pp. 73-103. JFM34.0700.01
  31. [Z] O. Zariski, Algebraic Surfaces, Springer, New York-Heidelberg- Berlin (1971). Zbl0219.14020MR469915

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.