Existence and convexity for hyperspheres of prescribed mean curvature

Andrejs Treibergs

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 2, page 225-241
  • ISSN: 0391-173X

How to cite

top

Treibergs, Andrejs. "Existence and convexity for hyperspheres of prescribed mean curvature." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.2 (1985): 225-241. <http://eudml.org/doc/83957>.

@article{Treibergs1985,
author = {Treibergs, Andrejs},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {prescribed mean curvature; convex hypersurfaces},
language = {eng},
number = {2},
pages = {225-241},
publisher = {Scuola normale superiore},
title = {Existence and convexity for hyperspheres of prescribed mean curvature},
url = {http://eudml.org/doc/83957},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Treibergs, Andrejs
TI - Existence and convexity for hyperspheres of prescribed mean curvature
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 2
SP - 225
EP - 241
LA - eng
KW - prescribed mean curvature; convex hypersurfaces
UR - http://eudml.org/doc/83957
ER -

References

top
  1. [1] A. Aeppli, On the uniqueness of compact solutions for certain elliptic differential equations, Proc. Amer. Math. Soc., 11 (1960), pp. 832-836. Zbl0196.40502MR121567
  2. [2] A.D. Aleksandrov, Uniqueness theorems for surfaces in the large I, Vestnik Leningrad Univ., 11 (1956), pp. 19, 5-17 = Amer. Math. Soc. Transl. ser. 2, 21 (1962), pp. 341-354. Zbl0122.39601MR86338
  3. [3] T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampere Equations, Springer-Verlag, New York, 1982. Zbl0512.53044MR681859
  4. [4] I. Bakelman - B. Kantor, Estimates for solutions of quasilinear elliptic equations connected with problems of geometry in the large, Mat. Sb., 91 (133) (1973), no. 3 = Math. USSR Sb., 20 (173) 3, pp. 348-363. Zbl0286.35034MR333441
  5. [5] I. Bakelman - B. Kantor, Existence of spherically homeomorphic hypersurfaces in Euclidean Space with prescribed mean curvature, Geometry and Topology, Leningrad, 1 (1974), pp. 3-10. MR423266
  6. [6] J.T. Chen - W. Huang, Convexity of capillary surfaces in outer space, to appear. Zbl0496.76005MR665156
  7. [7] W. Firey, Christoffel's problem for general convex bodies, Mathematika, 15 (1968), pp. 7-21. Zbl0162.54303MR230259
  8. [8] D. Gilbarg - N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. Zbl0361.35003MR473443
  9. [9] N. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems, University of Wisconsin, Math. Res. Ctr. Tech. Rep. 2307 (1981), to appear in Indiana Univ. Math. J. Zbl0481.35024MR703287
  10. [10] V. Oliker, Hypersurfaces in Rn+1 with prescribed Gaussian curvature and related equations of Monge-Ampere type, preprint (1982). 
  11. [11] A. Pogorelov, Extrinsic Geometry of Convex Surfaces, AMS Translations of Mathematical Monographs35, Providence, 1973, pp. 435-442. Zbl0311.53067MR346714
  12. [12] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc.London Ser. A264, pp. 413-496. Zbl0181.38003MR282058
  13. [13] A. Treibergs - S.W. Wei, Embedded hyperspheres with prescribed mean curvature, J. Diff. Geom., 18 (1983). Zbl0529.53043MR723815

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.