On the existence of convex hypersurfaces with prescribed mean curvature

Kaising Tso

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 2, page 225-243
  • ISSN: 0391-173X

How to cite

top

Tso, Kaising. "On the existence of convex hypersurfaces with prescribed mean curvature." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.2 (1989): 225-243. <http://eudml.org/doc/84052>.

@article{Tso1989,
author = {Tso, Kaising},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {mean curvature; Euler-Lagrange equation; convex hypersurface; negative gradient flow},
language = {eng},
number = {2},
pages = {225-243},
publisher = {Scuola normale superiore},
title = {On the existence of convex hypersurfaces with prescribed mean curvature},
url = {http://eudml.org/doc/84052},
volume = {16},
year = {1989},
}

TY - JOUR
AU - Tso, Kaising
TI - On the existence of convex hypersurfaces with prescribed mean curvature
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 2
SP - 225
EP - 243
LA - eng
KW - mean curvature; Euler-Lagrange equation; convex hypersurface; negative gradient flow
UR - http://eudml.org/doc/84052
ER -

References

top
  1. [BK] L. Bakelman, - B. Kantor, Existence of spherically homeomorphic hypersurfaces in Euclidean space with prescribed mean curvature, Geometry and Topology, Leningrad (1974), 3-10. 
  2. [CNS] L. Caffarelli - J. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations. IV: Starshaped compact Weingarten hypersurfaces, Current topics in partial differential equations, Ed. by Y. Ohya, K. Kasahara, N. Shimakura (1986), 1-26, Kinokunize Co., Tokyo. Zbl0672.35027MR1112140
  3. [F] H. Federer, Geometric Measure Theory, Springer-Verlag, Grundlehren 163, New York, 1969. Zbl0176.00801MR257325
  4. [H] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom.17 (1982), 255-306. Zbl0504.53034MR664497
  5. [HU] G. Huisken, Flow by mean curvature of convex hypersurfaces into spheres, J. Differential Geom.20 (1984), 237-266. Zbl0556.53001MR772132
  6. [LSU] O. Ladyzenskaja - A. Solonnikov - N.N. Uralceva, Linear and quasilinear equations of parabolic type, Trans Amer. Math. Soc.23, Providence, 1968. Zbl0174.15403
  7. [P] A.V. Pogorelov, The Minkowski multidimensional problem, Nauka, Moscow, 1975 (in Russian); Engl. transl., John-Wiley and Sons, New York, 1978. Zbl0387.53023MR478079
  8. [T] A. Treibergs, Existence and convexity of hyperspheres of prescribed curvature, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 225-241. Zbl0599.53044MR829053
  9. [TW] A. Treibergs - S.W. Wei, Embedded hypersurfaces with prescribed mean curvature, J. Cl. Sci. (4) 18 (1983), 513-521. Zbl0529.53043MR723815
  10. [TS] K. Tso, Existence of convex hypersurfaces with prescribed Gauss-Kronecker curvature, preprint 1989. MR1131436
  11. [Y] S.T. Yau, Problem section, Seminar on differential geometry, Ed. S. T. Yau, Ann. of Math. Stud., Princeton Univ. Press.102, 1982, 669-706. Zbl0479.53001MR645762

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.