Cohomology of the Lagrange complex

W. M. Tulczyjew

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)

  • Volume: 14, Issue: 2, page 217-227
  • ISSN: 0391-173X

How to cite

top

Tulczyjew, W. M.. "Cohomology of the Lagrange complex." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.2 (1987): 217-227. <http://eudml.org/doc/84004>.

@article{Tulczyjew1987,
author = {Tulczyjew, W. M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Lagrange complex; inverse problem of the calculus of variations; cohomology; Frölicher; Nijenhuis; de Rham cohomology},
language = {eng},
number = {2},
pages = {217-227},
publisher = {Scuola normale superiore},
title = {Cohomology of the Lagrange complex},
url = {http://eudml.org/doc/84004},
volume = {14},
year = {1987},
}

TY - JOUR
AU - Tulczyjew, W. M.
TI - Cohomology of the Lagrange complex
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 2
SP - 217
EP - 227
LA - eng
KW - Lagrange complex; inverse problem of the calculus of variations; cohomology; Frölicher; Nijenhuis; de Rham cohomology
UR - http://eudml.org/doc/84004
ER -

References

top
  1. [1] LM. Anderson - T. Duchamp, On the existence of global variational principles, Amer. J. Math., 102 (1980), pp. 781-868. Zbl0454.58021MR590637
  2. [2] C. Ehresmann, Les prolongements d' une variété différentiable, C.R. Acad. Sci. Paris, 233 (1951), pp. 598-600. Zbl0043.17401MR44198
  3. [3] A. Frölicher - A. Nijenhuis, Theory of vector valued differential forms, Nederl. Akad. Wetensch. Proc. Ser. A., 59 (1956), pp. 338-359. Zbl0079.37502MR82554
  4. [4] G. Pidello - W.M. Tulczyjew, Derivations of differential forms on jet bundles, (to appear). Zbl0642.58004MR916711
  5. [5] F. Takens, A global version of the inverse problem of the calculus of variations, J. Differential Geometry, 14 (1979), pp. 543-562. Zbl0463.58015MR600611
  6. [6] W.M. Tulczyjew, Sur la différentielle de Lagrange, C.R. Acad. Sci. Paris Sér. A., 280 (1975), pp. 1295-1298. Zbl0314.58018MR377987
  7. [7] W.M. Tulczyjew, The Lagrange differential, Bull. Acad. Polon. Sci., 24 (1976). Zbl0352.58002MR650306
  8. [8] W.M. Tulczyjew, The Lagrange complex, Bull. Soc. Math. France, 105 (1977), pp. 419-431. Zbl0408.58020MR494272
  9. [9] A.M. Vinogradov, A spectral sequence associated with a nonlinear differential equation, and algebro-geometric foundation of Lagrangian field theory with constraints, Soviet Math. Dokl., 19 (1978), pp. 144-148. Zbl0406.58015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.