Cohomology of the Lagrange complex
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)
- Volume: 14, Issue: 2, page 217-227
- ISSN: 0391-173X
Access Full Article
topHow to cite
topTulczyjew, W. M.. "Cohomology of the Lagrange complex." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.2 (1987): 217-227. <http://eudml.org/doc/84004>.
@article{Tulczyjew1987,
author = {Tulczyjew, W. M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Lagrange complex; inverse problem of the calculus of variations; cohomology; Frölicher; Nijenhuis; de Rham cohomology},
language = {eng},
number = {2},
pages = {217-227},
publisher = {Scuola normale superiore},
title = {Cohomology of the Lagrange complex},
url = {http://eudml.org/doc/84004},
volume = {14},
year = {1987},
}
TY - JOUR
AU - Tulczyjew, W. M.
TI - Cohomology of the Lagrange complex
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 2
SP - 217
EP - 227
LA - eng
KW - Lagrange complex; inverse problem of the calculus of variations; cohomology; Frölicher; Nijenhuis; de Rham cohomology
UR - http://eudml.org/doc/84004
ER -
References
top- [1] LM. Anderson - T. Duchamp, On the existence of global variational principles, Amer. J. Math., 102 (1980), pp. 781-868. Zbl0454.58021MR590637
- [2] C. Ehresmann, Les prolongements d' une variété différentiable, C.R. Acad. Sci. Paris, 233 (1951), pp. 598-600. Zbl0043.17401MR44198
- [3] A. Frölicher - A. Nijenhuis, Theory of vector valued differential forms, Nederl. Akad. Wetensch. Proc. Ser. A., 59 (1956), pp. 338-359. Zbl0079.37502MR82554
- [4] G. Pidello - W.M. Tulczyjew, Derivations of differential forms on jet bundles, (to appear). Zbl0642.58004MR916711
- [5] F. Takens, A global version of the inverse problem of the calculus of variations, J. Differential Geometry, 14 (1979), pp. 543-562. Zbl0463.58015MR600611
- [6] W.M. Tulczyjew, Sur la différentielle de Lagrange, C.R. Acad. Sci. Paris Sér. A., 280 (1975), pp. 1295-1298. Zbl0314.58018MR377987
- [7] W.M. Tulczyjew, The Lagrange differential, Bull. Acad. Polon. Sci., 24 (1976). Zbl0352.58002MR650306
- [8] W.M. Tulczyjew, The Lagrange complex, Bull. Soc. Math. France, 105 (1977), pp. 419-431. Zbl0408.58020MR494272
- [9] A.M. Vinogradov, A spectral sequence associated with a nonlinear differential equation, and algebro-geometric foundation of Lagrangian field theory with constraints, Soviet Math. Dokl., 19 (1978), pp. 144-148. Zbl0406.58015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.