Regularity of the solutions of second order evolution equations and their attractors

J. M. Ghidaglia; R. Temam

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)

  • Volume: 14, Issue: 3, page 485-511
  • ISSN: 0391-173X

How to cite

top

Ghidaglia, J. M., and Temam, R.. "Regularity of the solutions of second order evolution equations and their attractors." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.3 (1987): 485-511. <http://eudml.org/doc/84015>.

@article{Ghidaglia1987,
author = {Ghidaglia, J. M., Temam, R.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {regularity; second order Cauchy problem; Hilbert space; attractors; nonlinear wave equation},
language = {eng},
number = {3},
pages = {485-511},
publisher = {Scuola normale superiore},
title = {Regularity of the solutions of second order evolution equations and their attractors},
url = {http://eudml.org/doc/84015},
volume = {14},
year = {1987},
}

TY - JOUR
AU - Ghidaglia, J. M.
AU - Temam, R.
TI - Regularity of the solutions of second order evolution equations and their attractors
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 3
SP - 485
EP - 511
LA - eng
KW - regularity; second order Cauchy problem; Hilbert space; attractors; nonlinear wave equation
UR - http://eudml.org/doc/84015
ER -

References

top
  1. [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12 (1959), 623-727. Zbl0093.10401MR125307
  2. [2] A.V. Babin and M.I. Vishik, Regular attractors of semigroups and evolution equations, J. Math Pures Appl., 62 (1983), 441-491. Zbl0565.47045MR735932
  3. [3] A.V. Babin et M.I. Vishik, Attracteurs maximaux dans les équations aux dérivées partielles, Séminaire du Collège de France, J.L. Lions Ed., Pitman, Boston, 1985. Zbl0575.35005MR879455
  4. [4] C. Bardos, A regularity theorem for parabolic equations, J. Funct. Anal., 7 (1971), 311-322. Zbl0214.12302MR283433
  5. [5] L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, 1978. Zbl0283.05001
  6. [6] N. Dunford and J. Schwartz, Linear Operators Part II, Self adjoint Operators in Hilbert Spaces, Interscience Publishers, 1963. Zbl0128.34803
  7. [7] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
  8. [8] J.M. Ghidagua and R. Temam, Attractors for damped nonlinear hyperbolic equations, J. Math. Pures et Appl., 66(3) 1987, pp. 273-319, and C.R. Acad. Sci. Paris. t. 300, série I, n° 7, 1985, pp. 185-188. Zbl0572.35071MR913856
  9. [9] J.M. Ghidaglia and R. Temam, Dimension of the universal attractor describing time periodically driven Sine-Gordon equation, Transport Theory and Statistical Physics, 16, 1987, pp. 253-265. Zbl0637.58017MR898482
  10. [10] J. Hale, Asymptotic behavior and dynamics in infinite dimensions, Lectures in Granada, Pitman, Boston, 1985. Zbl0653.35006MR908897
  11. [11] J.K. Hale and J. Scheurle, Smoothness of bounded solutions of nonlinear evolution equations, J. Differential Equations, 56 (1985), 142-163. Zbl0505.34029MR772123
  12. [12] A. Haraux, Two remarks on dissipative hyperbolic problems, Séminaire du Collège de France, J.L. Lions Ed., Pitman, Boston, 1985. Zbl0579.35057MR879461
  13. [13] O.A. Ladyzhenksaya, V.A. Solonikov and N.N. Ural, Linear and quasilinear equations of parabolic type, Translation of Math. Monographs, n° 23, Amer. Math. Soc., Providence R.I. 
  14. [14] N. Levinson, Transformation theory of nonlinear differential equations of the second order, Annals of Math., 45, 4, (1944), 723-737. Zbl0061.18910MR11505
  15. [15] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Zbl0189.40603MR259693
  16. [16] J.L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, Springer, Berlin, 1972 (translated from Dunod, Paris, 1968). Zbl0223.35039
  17. [17] J.L. Lions and W.A. Strauss, Some nonlinear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96. Zbl0132.10501MR199519
  18. [18] B. Mandelbrot, Fractals: Form, Chance and Dimension, Freeman, San Francisco, 1977. Zbl0376.28020MR471493
  19. [19] J.B. Rauch and F. MasseyIII, Differentiability of solutions to hyperbolic initial-boundary value problem, Trans. Amer. Math. Soc., 189 (1974), 303-318. Zbl0282.35014MR340832
  20. [20] J. Sather, The existence of global classical solution of the initial-boundary value problem for □ u + u3 = f. Arch. Rational Mech. Anal., 22 (1966), 292-307. Zbl0141.28802
  21. [21] I. Segal, Nonlinear semi-groups, Ann. of Math., 78, n° 2. 1963. Zbl0204.16004MR152908
  22. [22] J. Smale, Smooth solutions of the heat and wave equations, Comment. Math. Helvetici, 55 (1980), 1-12. Zbl0439.35017MR569242
  23. [23] R. Temam, Behaviour at time t = 0 of the solutions of semi-linear evolution equations, J. Differential Equations, 43 (1982), 73-92. Zbl0446.35057MR645638
  24. [24] J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Scient. Ecole Norm. Sup., 4e Série, 14 (1981), 209-246. Zbl0495.35024MR631751

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.