Regularity of the solutions of second order evolution equations and their attractors

J. M. Ghidaglia; R. Temam

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)

  • Volume: 14, Issue: 3, page 485-511
  • ISSN: 0391-173X

How to cite

top

Ghidaglia, J. M., and Temam, R.. "Regularity of the solutions of second order evolution equations and their attractors." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.3 (1987): 485-511. <http://eudml.org/doc/84015>.

@article{Ghidaglia1987,
author = {Ghidaglia, J. M., Temam, R.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {regularity; second order Cauchy problem; Hilbert space; attractors; nonlinear wave equation},
language = {eng},
number = {3},
pages = {485-511},
publisher = {Scuola normale superiore},
title = {Regularity of the solutions of second order evolution equations and their attractors},
url = {http://eudml.org/doc/84015},
volume = {14},
year = {1987},
}

TY - JOUR
AU - Ghidaglia, J. M.
AU - Temam, R.
TI - Regularity of the solutions of second order evolution equations and their attractors
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 3
SP - 485
EP - 511
LA - eng
KW - regularity; second order Cauchy problem; Hilbert space; attractors; nonlinear wave equation
UR - http://eudml.org/doc/84015
ER -

References

top
  1. [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12 (1959), 623-727. Zbl0093.10401MR125307
  2. [2] A.V. Babin and M.I. Vishik, Regular attractors of semigroups and evolution equations, J. Math Pures Appl., 62 (1983), 441-491. Zbl0565.47045MR735932
  3. [3] A.V. Babin et M.I. Vishik, Attracteurs maximaux dans les équations aux dérivées partielles, Séminaire du Collège de France, J.L. Lions Ed., Pitman, Boston, 1985. Zbl0575.35005MR879455
  4. [4] C. Bardos, A regularity theorem for parabolic equations, J. Funct. Anal., 7 (1971), 311-322. Zbl0214.12302MR283433
  5. [5] L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, 1978. Zbl0283.05001
  6. [6] N. Dunford and J. Schwartz, Linear Operators Part II, Self adjoint Operators in Hilbert Spaces, Interscience Publishers, 1963. Zbl0128.34803
  7. [7] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
  8. [8] J.M. Ghidagua and R. Temam, Attractors for damped nonlinear hyperbolic equations, J. Math. Pures et Appl., 66(3) 1987, pp. 273-319, and C.R. Acad. Sci. Paris. t. 300, série I, n° 7, 1985, pp. 185-188. Zbl0572.35071MR913856
  9. [9] J.M. Ghidaglia and R. Temam, Dimension of the universal attractor describing time periodically driven Sine-Gordon equation, Transport Theory and Statistical Physics, 16, 1987, pp. 253-265. Zbl0637.58017MR898482
  10. [10] J. Hale, Asymptotic behavior and dynamics in infinite dimensions, Lectures in Granada, Pitman, Boston, 1985. Zbl0653.35006MR908897
  11. [11] J.K. Hale and J. Scheurle, Smoothness of bounded solutions of nonlinear evolution equations, J. Differential Equations, 56 (1985), 142-163. Zbl0505.34029MR772123
  12. [12] A. Haraux, Two remarks on dissipative hyperbolic problems, Séminaire du Collège de France, J.L. Lions Ed., Pitman, Boston, 1985. Zbl0579.35057MR879461
  13. [13] O.A. Ladyzhenksaya, V.A. Solonikov and N.N. Ural, Linear and quasilinear equations of parabolic type, Translation of Math. Monographs, n° 23, Amer. Math. Soc., Providence R.I. 
  14. [14] N. Levinson, Transformation theory of nonlinear differential equations of the second order, Annals of Math., 45, 4, (1944), 723-737. Zbl0061.18910MR11505
  15. [15] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Zbl0189.40603MR259693
  16. [16] J.L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, Springer, Berlin, 1972 (translated from Dunod, Paris, 1968). Zbl0223.35039
  17. [17] J.L. Lions and W.A. Strauss, Some nonlinear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96. Zbl0132.10501MR199519
  18. [18] B. Mandelbrot, Fractals: Form, Chance and Dimension, Freeman, San Francisco, 1977. Zbl0376.28020MR471493
  19. [19] J.B. Rauch and F. MasseyIII, Differentiability of solutions to hyperbolic initial-boundary value problem, Trans. Amer. Math. Soc., 189 (1974), 303-318. Zbl0282.35014MR340832
  20. [20] J. Sather, The existence of global classical solution of the initial-boundary value problem for □ u + u3 = f. Arch. Rational Mech. Anal., 22 (1966), 292-307. Zbl0141.28802
  21. [21] I. Segal, Nonlinear semi-groups, Ann. of Math., 78, n° 2. 1963. Zbl0204.16004MR152908
  22. [22] J. Smale, Smooth solutions of the heat and wave equations, Comment. Math. Helvetici, 55 (1980), 1-12. Zbl0439.35017MR569242
  23. [23] R. Temam, Behaviour at time t = 0 of the solutions of semi-linear evolution equations, J. Differential Equations, 43 (1982), 73-92. Zbl0446.35057MR645638
  24. [24] J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Scient. Ecole Norm. Sup., 4e Série, 14 (1981), 209-246. Zbl0495.35024MR631751

NotesEmbed ?

top

You must be logged in to post comments.