Sur le problème de Schottky pour les variétés de Prym

A. Beauville; O. Debarre

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)

  • Volume: 14, Issue: 4, page 613-623
  • ISSN: 0391-173X

How to cite

top

Beauville, A., and Debarre, O.. "Sur le problème de Schottky pour les variétés de Prym." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.4 (1987): 613-623. <http://eudml.org/doc/84020>.

@article{Beauville1987,
author = {Beauville, A., Debarre, O.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Schottky problem; moduli space of principally polarized abelian varieties; Prym varieties; Kummer variety},
language = {fre},
number = {4},
pages = {613-623},
publisher = {Scuola normale superiore},
title = {Sur le problème de Schottky pour les variétés de Prym},
url = {http://eudml.org/doc/84020},
volume = {14},
year = {1987},
}

TY - JOUR
AU - Beauville, A.
AU - Debarre, O.
TI - Sur le problème de Schottky pour les variétés de Prym
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 4
SP - 613
EP - 623
LA - fre
KW - Schottky problem; moduli space of principally polarized abelian varieties; Prym varieties; Kummer variety
UR - http://eudml.org/doc/84020
ER -

References

top
  1. [A-C-G-H] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris. - Geometry of algebraic curves, volume II. A paraître. Zbl0559.14017
  2. [A-D] E. Arbarello, C. De Concini. - Another proof of a conjecture of S.P. Novikov on periods of Abelian integrals on Riemann surfaces. Duke Math. J.54 (1987), pp. 163-178. Zbl0629.14022MR885782
  3. [A-M] A. Andreotti, A. Mayer. - On period relations for abelian integrals on algebraic curves. Ann. Scuola Norm. Sup. Pisa Cl. Sci. III21 (1967), pp. 189-238. Zbl0222.14024MR220740
  4. [B1] A. Beauville. - Prym varieties and the Schottky problem. Invent. Math.41 (1977), pp. 149-196. Zbl0333.14013MR572974
  5. [B2] A. Beauville. - Sous-variétés spéciales des variétés de Prym. Compositio Math.45 (1982), pp. 357-383. Zbl0504.14022MR656611
  6. [B3] A. Beauville. - Le problème de Schottky et la conjecture de Novikov. Exposé 675 au séminaire Bourbaki. Astérisque152-153 (1988), pp. 101-112. Zbl0637.14021MR936851
  7. [B-D] A. Beauville, O. Debarre. - Une relation entre deux approches du problème de Schottky. Invent. Math.86 (1986), pp. 195-207. Zbl0659.14021MR853450
  8. [D1] O. Debarre. - Sur les variétés abéliennes dont le diviseur thêta est singulier en codimension 3. Duke Math. J.56 (1988). Zbl0699.14058MR952234
  9. [D2] O. Debarre. - Variétés de Prym et ensembles d'Andreotti-Mayer. A paraître. 
  10. [G] A. Grothendieck. - Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). Masson et North-Holland, Paris, Amsterdam (1968). Zbl0197.47202MR476737
  11. [M] D. Mumford. - Prym varieties I. Contributions to analysis, pp. 325-250. Academic Press, New-York (1974). Zbl0299.14018MR379510
  12. [W] G. Welters. - Recovering the curve data from a general Prym variety. Amer. J. of Math.109 (1987), pp. 165-182. Zbl0639.14026MR878204
  13. [Z] O. Zariski. - On a theorem of Severi. Amer. J. of Math.50 (1928), pp. 87-92. Zbl54.0698.01MR1507910JFM54.0698.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.