Multiple convex hypersurfaces with prescribed mean curvature
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)
- Volume: 21, Issue: 2, page 175-191
- ISSN: 0391-173X
Access Full Article
topHow to cite
topZhu, Xi-Ping. "Multiple convex hypersurfaces with prescribed mean curvature." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.2 (1994): 175-191. <http://eudml.org/doc/84173>.
@article{Zhu1994,
author = {Zhu, Xi-Ping},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {prescribed mean curvature; mean curvature flow; convex hypersurfaces; mountain pass principle},
language = {eng},
number = {2},
pages = {175-191},
publisher = {Scuola normale superiore},
title = {Multiple convex hypersurfaces with prescribed mean curvature},
url = {http://eudml.org/doc/84173},
volume = {21},
year = {1994},
}
TY - JOUR
AU - Zhu, Xi-Ping
TI - Multiple convex hypersurfaces with prescribed mean curvature
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 2
SP - 175
EP - 191
LA - eng
KW - prescribed mean curvature; mean curvature flow; convex hypersurfaces; mountain pass principle
UR - http://eudml.org/doc/84173
ER -
References
top- [1] E.F. Beckenbach - R. Bellman, Inequalities, Springer-Verlag, 1983. Zbl0513.26003MR192009
- [2] L. Bakelman - B. Kantor, Existence of spherically homeomorphic hypersurfaces in Euclidean space with prescribed mean curvature, Geometry and Topology, Leningrad (1974), 3-10.
- [3] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalue of the Hessian, Acta Math.155 (1985), 261-301. Zbl0654.35031MR806416
- [4] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, IV: Starshaped compact Weingarten hypersurfaces, in Current topics in partial differential equations, Ed. by Y. Ohya - K. Kasahara- N. Shimakura, Kinokunize Co., Tokyo, 1986, 1-26. Zbl0672.35027MR1112140
- [5] K.S. Chou (TSO), Deforming a hypersurface by its Gauss-Kroneker curvature, Comm. Pure Appl. Math., 38 (1985), 867-882. Zbl0612.53005MR812353
- [6] K.S. Chou (TSO), On the existence of convex hypersurfaces with prescribed mean curvature, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), 225-243. Zbl0701.53078MR1041896
- [7] K.S. Chou (TSO), Convex hypersurfaces with prescribed Gauss-Kronecher curvature, J. Differential Geom., 34 (1991), 389-410. Zbl0723.53041MR1131436
- [8] N.V. Krylov, Nonlinear ellyptic and parabolic equations of second order, Reidel, Dordrecht, 1987.
- [9] N.V. Krylov - M.V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk, 40 (1980), 161-175. English tranl., Math. USSR-Izv., 16 (1981), 151-164. Zbl0464.35035MR563790
- [10] M. Marcus - L. Lopes, Inequalities for symmetric functions and Hermitian matrices. Canad. J. Math., 8 (1956), 524-531. Zbl0079.02103MR84541
- [11] A. Treibergs - S.W. Wei, Embedded hypersurfaces with prescribed mean curvature, J. Diff. Geom. (4), 18 (1983), 513-521. Zbl0529.53043MR723815
- [12] J.I.E. Urbas, An expansion of convex hypersurfaces, J. Differential Geom., 33 (1991), 91-125. Zbl0746.53006MR1085136
- [13] S.T. Yau, Problem section, in Seminar on Differential Geometry, Ed. by S.T. Yau, Annals of Math. Studies, Princeton University Press, (1982), 669-706. Zbl0479.53001MR645762
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.