Multiple convex hypersurfaces with prescribed mean curvature

Xi-Ping Zhu

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)

  • Volume: 21, Issue: 2, page 175-191
  • ISSN: 0391-173X

How to cite

top

Zhu, Xi-Ping. "Multiple convex hypersurfaces with prescribed mean curvature." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.2 (1994): 175-191. <http://eudml.org/doc/84173>.

@article{Zhu1994,
author = {Zhu, Xi-Ping},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {prescribed mean curvature; mean curvature flow; convex hypersurfaces; mountain pass principle},
language = {eng},
number = {2},
pages = {175-191},
publisher = {Scuola normale superiore},
title = {Multiple convex hypersurfaces with prescribed mean curvature},
url = {http://eudml.org/doc/84173},
volume = {21},
year = {1994},
}

TY - JOUR
AU - Zhu, Xi-Ping
TI - Multiple convex hypersurfaces with prescribed mean curvature
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 2
SP - 175
EP - 191
LA - eng
KW - prescribed mean curvature; mean curvature flow; convex hypersurfaces; mountain pass principle
UR - http://eudml.org/doc/84173
ER -

References

top
  1. [1] E.F. Beckenbach - R. Bellman, Inequalities, Springer-Verlag, 1983. Zbl0513.26003MR192009
  2. [2] L. Bakelman - B. Kantor, Existence of spherically homeomorphic hypersurfaces in Euclidean space with prescribed mean curvature, Geometry and Topology, Leningrad (1974), 3-10. 
  3. [3] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalue of the Hessian, Acta Math.155 (1985), 261-301. Zbl0654.35031MR806416
  4. [4] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, IV: Starshaped compact Weingarten hypersurfaces, in Current topics in partial differential equations, Ed. by Y. Ohya - K. Kasahara- N. Shimakura, Kinokunize Co., Tokyo, 1986, 1-26. Zbl0672.35027MR1112140
  5. [5] K.S. Chou (TSO), Deforming a hypersurface by its Gauss-Kroneker curvature, Comm. Pure Appl. Math., 38 (1985), 867-882. Zbl0612.53005MR812353
  6. [6] K.S. Chou (TSO), On the existence of convex hypersurfaces with prescribed mean curvature, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), 225-243. Zbl0701.53078MR1041896
  7. [7] K.S. Chou (TSO), Convex hypersurfaces with prescribed Gauss-Kronecher curvature, J. Differential Geom., 34 (1991), 389-410. Zbl0723.53041MR1131436
  8. [8] N.V. Krylov, Nonlinear ellyptic and parabolic equations of second order, Reidel, Dordrecht, 1987. 
  9. [9] N.V. Krylov - M.V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk, 40 (1980), 161-175. English tranl., Math. USSR-Izv., 16 (1981), 151-164. Zbl0464.35035MR563790
  10. [10] M. Marcus - L. Lopes, Inequalities for symmetric functions and Hermitian matrices. Canad. J. Math., 8 (1956), 524-531. Zbl0079.02103MR84541
  11. [11] A. Treibergs - S.W. Wei, Embedded hypersurfaces with prescribed mean curvature, J. Diff. Geom. (4), 18 (1983), 513-521. Zbl0529.53043MR723815
  12. [12] J.I.E. Urbas, An expansion of convex hypersurfaces, J. Differential Geom., 33 (1991), 91-125. Zbl0746.53006MR1085136
  13. [13] S.T. Yau, Problem section, in Seminar on Differential Geometry, Ed. by S.T. Yau, Annals of Math. Studies, Princeton University Press, (1982), 669-706. Zbl0479.53001MR645762

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.