The existence of nonminimal regular harmonic maps from to
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)
- Volume: 16, Issue: 3, page 355-365
- ISSN: 0391-173X
Access Full Article
topHow to cite
topZhang, Dong. "The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.3 (1989): 355-365. <http://eudml.org/doc/84057>.
@article{Zhang1989,
author = {Zhang, Dong},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {harmonic maps; minimizer; singularities; axially symmetric map; critical points; Lipschitz's condition; regular map; ordinary differential equations},
language = {eng},
number = {3},
pages = {355-365},
publisher = {Scuola normale superiore},
title = {The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$},
url = {http://eudml.org/doc/84057},
volume = {16},
year = {1989},
}
TY - JOUR
AU - Zhang, Dong
TI - The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 3
SP - 355
EP - 365
LA - eng
KW - harmonic maps; minimizer; singularities; axially symmetric map; critical points; Lipschitz's condition; regular map; ordinary differential equations
UR - http://eudml.org/doc/84057
ER -
References
top- [ABL] F. AlmgrenJr. - W. Browder - E. Lieb, Co-area, liquid crystals, and minimal surfaces, A selection of papers, Springer, New York, 1987. MR1032767
- [AL] F. AlmgrenJr. - E. Lieb, Minimizing harmonic mappings: bounds on the number of singularities and examples (including symmetry breaking), Preprint.
- [BC] H. Brézis - J. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Physics92 (1983), pp. 203-215. Zbl0532.58006MR728866
- [BCL] H. Brézis - J. Coron - E. Lieb, Harmonic maps with defects, Preprint. Zbl1043.58504
- [deG] P. De Gennes, The physics of liquid crystals, Oxford: Clarendon Press1974.
- [ES] J. EellsJr. - J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964), pp. 109-160. Zbl0122.40102MR164306
- [E] J. Ericksen, Equilibrium theory of liquid crystals. In: Advances in liquid crystals, 2, pp. 233-299; Brown, G.H. (ed) New York: Academic Press1976.
- [H] S. Hildebrandt, Proceedings of the 1980, Beijing Symposium on Differential Geometry and Equations. I, pp. 481-616. Zbl0515.58012
- [HKW1] S. Hildebrandt - H. Kaul - K.O. Widman, Harmonic maps into Riemannian manifolds with non-positive sectional curvature, Math. Scand.37 (1975), pp. 257-263. Zbl0321.53036MR405500
- [HKW2] S. Hildebrandt - H. Kaul - K.O. Widman, An existence theory for harmonic mappings of Riemannian manifolds, Acta Math.138 (1977), pp. 1-16. Zbl0356.53015MR433502
- [HL1] R. Hardt - F.H. Lin, A remark on H1 mappings of Riemannian manifolds, Manuscripta Math.56 (1986), pp. 1-10. Zbl0618.58015MR846982
- [HL2] R. Hardt - F.H. Lin, Stability of singularities of minimizing harmonic maps, Preprint. MR978080
- [HKL1] R. Hardt - D. Kinderlehrer - F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Physics.105 (1986), pp. 189-194. Zbl0611.35077MR852090
- [HKL2] R. Hardt - D. Kinderlehrer - F.H. Lin, Stable defects of minimizers of constrained variational principles, IMA Preprint. Zbl0657.49018
- [M] C.B. MorreyJr., Multiple integrals in the calculus of variations, Springer-Verlag, Heildelberg and New York, 1966. Zbl0142.38701MR202511
- [SU1] R. Schoen - K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom.60 (1984), pp. 307-335. Zbl0521.58021MR664498
- [SU2] R. Schoen - K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom.18, pp. 253-268. Zbl0547.58020MR710054
- [SU3] R. Schoen - K. Uhlenbeck, Regularity of minimizing harmonic maps into sphere, Inv. Math.78, (1984), pp. 89-100. Zbl0555.58011MR762354
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.