The existence of nonminimal regular harmonic maps from B 3 to S 2

Dong Zhang

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 3, page 355-365
  • ISSN: 0391-173X

How to cite

top

Zhang, Dong. "The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.3 (1989): 355-365. <http://eudml.org/doc/84057>.

@article{Zhang1989,
author = {Zhang, Dong},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {harmonic maps; minimizer; singularities; axially symmetric map; critical points; Lipschitz's condition; regular map; ordinary differential equations},
language = {eng},
number = {3},
pages = {355-365},
publisher = {Scuola normale superiore},
title = {The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$},
url = {http://eudml.org/doc/84057},
volume = {16},
year = {1989},
}

TY - JOUR
AU - Zhang, Dong
TI - The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 3
SP - 355
EP - 365
LA - eng
KW - harmonic maps; minimizer; singularities; axially symmetric map; critical points; Lipschitz's condition; regular map; ordinary differential equations
UR - http://eudml.org/doc/84057
ER -

References

top
  1. [ABL] F. AlmgrenJr. - W. Browder - E. Lieb, Co-area, liquid crystals, and minimal surfaces, A selection of papers, Springer, New York, 1987. MR1032767
  2. [AL] F. AlmgrenJr. - E. Lieb, Minimizing harmonic mappings: bounds on the number of singularities and examples (including symmetry breaking), Preprint. 
  3. [BC] H. Brézis - J. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Physics92 (1983), pp. 203-215. Zbl0532.58006MR728866
  4. [BCL] H. Brézis - J. Coron - E. Lieb, Harmonic maps with defects, Preprint. Zbl1043.58504
  5. [deG] P. De Gennes, The physics of liquid crystals, Oxford: Clarendon Press1974. 
  6. [ES] J. EellsJr. - J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964), pp. 109-160. Zbl0122.40102MR164306
  7. [E] J. Ericksen, Equilibrium theory of liquid crystals. In: Advances in liquid crystals, 2, pp. 233-299; Brown, G.H. (ed) New York: Academic Press1976. 
  8. [H] S. Hildebrandt, Proceedings of the 1980, Beijing Symposium on Differential Geometry and Equations. I, pp. 481-616. Zbl0515.58012
  9. [HKW1] S. Hildebrandt - H. Kaul - K.O. Widman, Harmonic maps into Riemannian manifolds with non-positive sectional curvature, Math. Scand.37 (1975), pp. 257-263. Zbl0321.53036MR405500
  10. [HKW2] S. Hildebrandt - H. Kaul - K.O. Widman, An existence theory for harmonic mappings of Riemannian manifolds, Acta Math.138 (1977), pp. 1-16. Zbl0356.53015MR433502
  11. [HL1] R. Hardt - F.H. Lin, A remark on H1 mappings of Riemannian manifolds, Manuscripta Math.56 (1986), pp. 1-10. Zbl0618.58015MR846982
  12. [HL2] R. Hardt - F.H. Lin, Stability of singularities of minimizing harmonic maps, Preprint. MR978080
  13. [HKL1] R. Hardt - D. Kinderlehrer - F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Physics.105 (1986), pp. 189-194. Zbl0611.35077MR852090
  14. [HKL2] R. Hardt - D. Kinderlehrer - F.H. Lin, Stable defects of minimizers of constrained variational principles, IMA Preprint. Zbl0657.49018
  15. [M] C.B. MorreyJr., Multiple integrals in the calculus of variations, Springer-Verlag, Heildelberg and New York, 1966. Zbl0142.38701MR202511
  16. [SU1] R. Schoen - K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom.60 (1984), pp. 307-335. Zbl0521.58021MR664498
  17. [SU2] R. Schoen - K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom.18, pp. 253-268. Zbl0547.58020MR710054
  18. [SU3] R. Schoen - K. Uhlenbeck, Regularity of minimizing harmonic maps into sphere, Inv. Math.78, (1984), pp. 89-100. Zbl0555.58011MR762354

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.