On modular functions in 2 variables attached to a family of hyperelliptic curves of genus 3

Keiji Matsumoto

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 4, page 557-578
  • ISSN: 0391-173X

How to cite

top

Matsumoto, Keiji. "On modular functions in 2 variables attached to a family of hyperelliptic curves of genus 3." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.4 (1989): 557-578. <http://eudml.org/doc/84062>.

@article{Matsumoto1989,
author = {Matsumoto, Keiji},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {hyperelliptic curves; Siegel upper half-space; monodromy group},
language = {eng},
number = {4},
pages = {557-578},
publisher = {Scuola normale superiore},
title = {On modular functions in 2 variables attached to a family of hyperelliptic curves of genus 3},
url = {http://eudml.org/doc/84062},
volume = {16},
year = {1989},
}

TY - JOUR
AU - Matsumoto, Keiji
TI - On modular functions in 2 variables attached to a family of hyperelliptic curves of genus 3
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 4
SP - 557
EP - 578
LA - eng
KW - hyperelliptic curves; Siegel upper half-space; monodromy group
UR - http://eudml.org/doc/84062
ER -

References

top
  1. [1] P. Deligne - G.D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math I.H.E.S., 63 (1986), pp. 5-88. Zbl0615.22008MR849651
  2. [2] T. Kimura, Hypergeometric Functions of Two Variables, Lecture Notes, Tokyo Univ., (1973). 
  3. [3] R.P. Holzapfel, Zweidimensionale periodische Funktionentheorie der Kugel, Akademie der Wissenschaften der DDR, Berlin, (1983). 
  4. [4] D. Mumford, Tata Lectures on Theta I-II, Birkhauser, Boston-Basel-Stuttgard, (1983). Zbl0509.14049MR688651
  5. [5] E. Picard, Sur les fonctions de deux variables independentes analogues aux fonctions modulaires, Acta Math., 2 (1883), pp. 114-135. JFM15.0432.01
  6. [6] I.I. Pjateckii-Sapiro, Geometry of Classical Domains and Automorphic Functions, Fizmatgiz, Moscow, (1961). 
  7. [7] H.E. Rauch - H.M. Farkas, Theta Functions with Applications to Reimann Surfaces, Williams and Wilkins, Baltimore, (1974). Zbl0292.30015MR352108
  8. [8] H.L. Resnikoff - Y.S. Tai, On the structure of a graded ring of automorphic forms on the 2-dimensional complex ball, Math. Ann.238 (1978), pp. 97-117. Zbl0371.32024MR512815
  9. [9] H. Shiga, One attempt to the K3 modular function I-II, Ann. Scuola Norm. Pisa, Serie IV-VI(1979), pp. 609-635, Serie IV-VIII(1981), pp. 157-182. Zbl0501.14019MR563337
  10. [10] H. Shiga, On the representation of the Picard modular function by theta constants I-II, to appear in Pub. R.I.M.S. Kyoto Univ., 24 (1988). Zbl0678.10020MR966178
  11. [11] T. Terada, Problème de Riemann et fonctions automorphes provenant des fonctions hypergeometriques de plusieurs variables, J. Math. Kyoto Univ., 13 (1973), pp. 557-578. Zbl0279.32022MR481156
  12. [12] T. Terada, Fonctions Hypergeometriques F1 et fonctions automorphes I-II, J. Math. Soc. Japan, 35 (1983), pp. 451-475, 37 (1985), pp. 173-185. Zbl0506.33001
  13. [13] M. Yoshida, Fuchsian Differential Equations, Vieweg, Verlag, Wiesbaden, (1987). Zbl0618.35001MR986252
  14. [14] I. Wakabayashi, Note on Picard's modular function of two variables, private note. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.