Multiplicity results for semilinear elliptic equations in a bounded domain of involving critical exponents
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)
- Volume: 17, Issue: 4, page 481-504
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAdimurthi, and Yadava, S. L.. "Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb {R}^2$ involving critical exponents." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.4 (1990): 481-504. <http://eudml.org/doc/84084>.
@article{Adimurthi1990,
author = {Adimurthi, Yadava, S. L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {481-504},
publisher = {Scuola normale superiore},
title = {Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb \{R\}^2$ involving critical exponents},
url = {http://eudml.org/doc/84084},
volume = {17},
year = {1990},
}
TY - JOUR
AU - Adimurthi
AU - Yadava, S. L.
TI - Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb {R}^2$ involving critical exponents
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 4
SP - 481
EP - 504
LA - eng
UR - http://eudml.org/doc/84084
ER -
References
top- [1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17, 1990, pp. 393-413. Zbl0732.35028
- [2] Adimurthi - S.L. Yadava, Elementary proof of the non-existence of nodal solutions for the semilinear elliptic equations with critical Sobolev exponent, Nonlinear Analysis TMA14, 1990. Zbl0706.35048
- [3] Adimurthi - S.L. Yadava, Bifurcation results for semilinear elliptic problem with critical exponent in R2, Nonlinear Analysis TMA14, (1990), pp. 607-612. Zbl0702.35015
- [4] Adimurthi, S.L. Yadava, A note on non-existence of nodal solutions of the semilinear elliptic equations with critical exponent in R2, Trans. Amer. Math. Soc., to appear. Zbl0706.35048
- [5] A. Ambrosetti - P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), pp. 349-381. ' Zbl0273.49063
- [6] F.V. Atkinson - H. Brezis - L.A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponents, C.R. Acad. Sci. Paris t-306 Série 1 (1988), pp. 711-714. Zbl0696.35059
- [7] P. Bartolo - V. Benci - D. Fortunato, Abstract critical point Theorem and applications to some nonlinear problems with "strong resonance" at infinity. Nonlinear Analysis TMA7 (1983), pp. 981-1012. Zbl0522.58012
- [8] H. Brezis - L. Nirenberg, Positive solutions of non-linear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983), pp. 437-477. Zbl0541.35029
- [9] A. Capozzi - D. Fortunato - G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. Henri Poincaré2 (1985), pp. 463-470. Zbl0612.35053
- [10] G. Cerami - S. Solimini - M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal.69 (1986), pp. 289-306. Zbl0614.35035
- [11] D. Fortunato - E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edinburgh105 (1987), pp. 205-213. Zbl0676.35024
- [12] C. Miranda, Un'osservazione sul teorema di Brouwer, Boll. Un. Mat. Ital. Ser. II Anno III19 (1940), pp. 5-7. Zbl0024.02203JFM66.0217.01
- [13] Z. Nehari, Characteristic values associated with a class of nonlinear second-order differential equations, Acta Mathematica105 (1961), pp. 141-175. Zbl0099.29104
- [14] S. Solimini, On the existence of inifinitely many radial solutions for some elliptic problems, Preprint. Zbl0663.35023
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.