Multiplicity results for semilinear elliptic equations in a bounded domain of 2 involving critical exponents

Adimurthi; S. L. Yadava

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)

  • Volume: 17, Issue: 4, page 481-504
  • ISSN: 0391-173X

How to cite

top

Adimurthi, and Yadava, S. L.. "Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb {R}^2$ involving critical exponents." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.4 (1990): 481-504. <http://eudml.org/doc/84084>.

@article{Adimurthi1990,
author = {Adimurthi, Yadava, S. L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {481-504},
publisher = {Scuola normale superiore},
title = {Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb \{R\}^2$ involving critical exponents},
url = {http://eudml.org/doc/84084},
volume = {17},
year = {1990},
}

TY - JOUR
AU - Adimurthi
AU - Yadava, S. L.
TI - Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb {R}^2$ involving critical exponents
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 4
SP - 481
EP - 504
LA - eng
UR - http://eudml.org/doc/84084
ER -

References

top
  1. [1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17, 1990, pp. 393-413. Zbl0732.35028
  2. [2] Adimurthi - S.L. Yadava, Elementary proof of the non-existence of nodal solutions for the semilinear elliptic equations with critical Sobolev exponent, Nonlinear Analysis TMA14, 1990. Zbl0706.35048
  3. [3] Adimurthi - S.L. Yadava, Bifurcation results for semilinear elliptic problem with critical exponent in R2, Nonlinear Analysis TMA14, (1990), pp. 607-612. Zbl0702.35015
  4. [4] Adimurthi, S.L. Yadava, A note on non-existence of nodal solutions of the semilinear elliptic equations with critical exponent in R2, Trans. Amer. Math. Soc., to appear. Zbl0706.35048
  5. [5] A. Ambrosetti - P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), pp. 349-381. ' Zbl0273.49063
  6. [6] F.V. Atkinson - H. Brezis - L.A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponents, C.R. Acad. Sci. Paris t-306 Série 1 (1988), pp. 711-714. Zbl0696.35059
  7. [7] P. Bartolo - V. Benci - D. Fortunato, Abstract critical point Theorem and applications to some nonlinear problems with "strong resonance" at infinity. Nonlinear Analysis TMA7 (1983), pp. 981-1012. Zbl0522.58012
  8. [8] H. Brezis - L. Nirenberg, Positive solutions of non-linear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983), pp. 437-477. Zbl0541.35029
  9. [9] A. Capozzi - D. Fortunato - G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. Henri Poincaré2 (1985), pp. 463-470. Zbl0612.35053
  10. [10] G. Cerami - S. Solimini - M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal.69 (1986), pp. 289-306. Zbl0614.35035
  11. [11] D. Fortunato - E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edinburgh105 (1987), pp. 205-213. Zbl0676.35024
  12. [12] C. Miranda, Un'osservazione sul teorema di Brouwer, Boll. Un. Mat. Ital. Ser. II Anno III19 (1940), pp. 5-7. Zbl0024.02203JFM66.0217.01
  13. [13] Z. Nehari, Characteristic values associated with a class of nonlinear second-order differential equations, Acta Mathematica105 (1961), pp. 141-175. Zbl0099.29104
  14. [14] S. Solimini, On the existence of inifinitely many radial solutions for some elliptic problems, Preprint. Zbl0663.35023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.