Liouville-Gelfand type problems for the N -laplacian on bounded domains of N

Elves A. de B. Silva; Sérgio H. M. Soares

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)

  • Volume: 28, Issue: 1, page 1-30
  • ISSN: 0391-173X

How to cite

top

Silva, Elves A. de B., and Soares, Sérgio H. M.. "Liouville-Gelfand type problems for the $N$-laplacian on bounded domains of $\mathbb {R}^N$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.1 (1999): 1-30. <http://eudml.org/doc/84371>.

@article{Silva1999,
author = {Silva, Elves A. de B., Soares, Sérgio H. M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {minimax methods; existence of solutions; multiplicity of solutions; subcritical case; critical case},
language = {eng},
number = {1},
pages = {1-30},
publisher = {Scuola normale superiore},
title = {Liouville-Gelfand type problems for the $N$-laplacian on bounded domains of $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/84371},
volume = {28},
year = {1999},
}

TY - JOUR
AU - Silva, Elves A. de B.
AU - Soares, Sérgio H. M.
TI - Liouville-Gelfand type problems for the $N$-laplacian on bounded domains of $\mathbb {R}^N$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 1
SP - 1
EP - 30
LA - eng
KW - minimax methods; existence of solutions; multiplicity of solutions; subcritical case; critical case
UR - http://eudml.org/doc/84371
ER -

References

top
  1. [ 1 ] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problems with critical growth for the N-Laplacian, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 393-413. Zbl0732.35028MR1079983
  2. [2] Adimurthi - S.L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of R2 involving critical exponent, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 481-504. Zbl0732.35029MR1093706
  3. [3] A. Ambrosetti - P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349-381. Zbl0273.49063MR370183
  4. [4] G. Bratu, G., Sur les équations intégrales non linéaires, Bull. Soc. Math. France42 (1914), 113-142. Zbl45.0525.03MR1504727JFM45.1306.01
  5. [5] H. Brezis, "Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert", North Holland, Amsterdam, 1973. Zbl0252.47055MR348562
  6. [6] H. Brezis - L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math.36 (1983), 437-477. Zbl0541.35029MR709644
  7. [7] P. Clément - D.G. De Figueiredo - E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal.7 (1996), 133-170. Zbl0939.35072MR1422009
  8. [8] M.G. Crandall - P.H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal.58 (1975), 201-218. Zbl0309.35057MR382848
  9. [9] E. Dibenedetto, C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7, 8 (1983), 827-850. Zbl0539.35027
  10. [10] J.M.B. Do Ó, Quasilinear elliptic equations with exponential nonlinearities, Comm. Appl. Nonlinear Anal.3 (1995), 63-72. Zbl0858.35042MR1343597
  11. [11] D.G. De Figueiredo - O.H. Miyagaki - B. Ruf, Elliptic equations in R2 with nonlinearites in the critical growth range, Calc. Var. Partial Differential Equations3 (1995), 139-153. Zbl0820.35060MR1386960
  12. [12] J. Garcia Azorero - I. Peral Alonso, On an Emden-Fowler type equation, Nonlinear Anal.18 (1992), 1085-1997. Zbl0781.35021MR1167423
  13. [13] I.M. Gelfand, Some problems in the theory of quasi-linear equations, Amer. Math. Soc. Transl. Ser.2, 29 (1963), 295-381. MR153960
  14. [14] D. Gilbarg - N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin-Heidelberg-New York - Tokio, 1983. Zbl0562.35001MR737190
  15. [15] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana1 (1985), 145-201. Zbl0704.49005MR834360
  16. [16] J. Liouville, Sur l'equation aux différences partielles d2log λ/dudv ± λ a2 = 0, J. Math. Pures Appl.18 (1853), 71-72. 
  17. [17] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.20 (1971), 1077 -1092. Zbl0203.43701MR301504
  18. [18] R. Panda, On semilinear Neumann problems with critical growth for the N-Laplacian, Nonlinear Anal.8 (1996), 1347-1366. Zbl0854.35045MR1377667
  19. [19] P.H. Rabinowitz, Minimax methods in critical point theory with applications to diff. equations, CBMS Regional Confer. Ser. in Math. n° 65, Amer. Math. Soc.Providence, RI (1986). Zbl0609.58002
  20. [20] W. Rudin, "Real and Complex Analysis", 3d edition, McGraw-Hill Book Company, New York, 1987. Zbl0925.00005MR924157
  21. [21] E.A.B. Silva, Linking theorems and applications to semilinear problems at resonance, Nonlinear Anal.16 (1991), 455-477. Zbl0731.35042MR1093380
  22. [22] E.A.B. Silva - S.H.M. Soares, Quasilinear Dirichlet problems in RN with critical growth, To appear in Nonlinear Anal. Zbl1158.35368
  23. [23] N. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech.17 (1967), 473-484. Zbl0163.36402MR216286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.