Liouville-Gelfand type problems for the -laplacian on bounded domains of
Elves A. de B. Silva; Sérgio H. M. Soares
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)
- Volume: 28, Issue: 1, page 1-30
- ISSN: 0391-173X
Access Full Article
topHow to cite
topSilva, Elves A. de B., and Soares, Sérgio H. M.. "Liouville-Gelfand type problems for the $N$-laplacian on bounded domains of $\mathbb {R}^N$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.1 (1999): 1-30. <http://eudml.org/doc/84371>.
@article{Silva1999,
author = {Silva, Elves A. de B., Soares, Sérgio H. M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {minimax methods; existence of solutions; multiplicity of solutions; subcritical case; critical case},
language = {eng},
number = {1},
pages = {1-30},
publisher = {Scuola normale superiore},
title = {Liouville-Gelfand type problems for the $N$-laplacian on bounded domains of $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/84371},
volume = {28},
year = {1999},
}
TY - JOUR
AU - Silva, Elves A. de B.
AU - Soares, Sérgio H. M.
TI - Liouville-Gelfand type problems for the $N$-laplacian on bounded domains of $\mathbb {R}^N$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 1
SP - 1
EP - 30
LA - eng
KW - minimax methods; existence of solutions; multiplicity of solutions; subcritical case; critical case
UR - http://eudml.org/doc/84371
ER -
References
top- [ 1 ] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problems with critical growth for the N-Laplacian, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 393-413. Zbl0732.35028MR1079983
- [2] Adimurthi - S.L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of R2 involving critical exponent, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 481-504. Zbl0732.35029MR1093706
- [3] A. Ambrosetti - P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349-381. Zbl0273.49063MR370183
- [4] G. Bratu, G., Sur les équations intégrales non linéaires, Bull. Soc. Math. France42 (1914), 113-142. Zbl45.0525.03MR1504727JFM45.1306.01
- [5] H. Brezis, "Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert", North Holland, Amsterdam, 1973. Zbl0252.47055MR348562
- [6] H. Brezis - L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math.36 (1983), 437-477. Zbl0541.35029MR709644
- [7] P. Clément - D.G. De Figueiredo - E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal.7 (1996), 133-170. Zbl0939.35072MR1422009
- [8] M.G. Crandall - P.H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal.58 (1975), 201-218. Zbl0309.35057MR382848
- [9] E. Dibenedetto, C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7, 8 (1983), 827-850. Zbl0539.35027
- [10] J.M.B. Do Ó, Quasilinear elliptic equations with exponential nonlinearities, Comm. Appl. Nonlinear Anal.3 (1995), 63-72. Zbl0858.35042MR1343597
- [11] D.G. De Figueiredo - O.H. Miyagaki - B. Ruf, Elliptic equations in R2 with nonlinearites in the critical growth range, Calc. Var. Partial Differential Equations3 (1995), 139-153. Zbl0820.35060MR1386960
- [12] J. Garcia Azorero - I. Peral Alonso, On an Emden-Fowler type equation, Nonlinear Anal.18 (1992), 1085-1997. Zbl0781.35021MR1167423
- [13] I.M. Gelfand, Some problems in the theory of quasi-linear equations, Amer. Math. Soc. Transl. Ser.2, 29 (1963), 295-381. MR153960
- [14] D. Gilbarg - N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin-Heidelberg-New York - Tokio, 1983. Zbl0562.35001MR737190
- [15] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana1 (1985), 145-201. Zbl0704.49005MR834360
- [16] J. Liouville, Sur l'equation aux différences partielles d2log λ/dudv ± λ a2 = 0, J. Math. Pures Appl.18 (1853), 71-72.
- [17] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.20 (1971), 1077 -1092. Zbl0203.43701MR301504
- [18] R. Panda, On semilinear Neumann problems with critical growth for the N-Laplacian, Nonlinear Anal.8 (1996), 1347-1366. Zbl0854.35045MR1377667
- [19] P.H. Rabinowitz, Minimax methods in critical point theory with applications to diff. equations, CBMS Regional Confer. Ser. in Math. n° 65, Amer. Math. Soc.Providence, RI (1986). Zbl0609.58002
- [20] W. Rudin, "Real and Complex Analysis", 3d edition, McGraw-Hill Book Company, New York, 1987. Zbl0925.00005MR924157
- [21] E.A.B. Silva, Linking theorems and applications to semilinear problems at resonance, Nonlinear Anal.16 (1991), 455-477. Zbl0731.35042MR1093380
- [22] E.A.B. Silva - S.H.M. Soares, Quasilinear Dirichlet problems in RN with critical growth, To appear in Nonlinear Anal. Zbl1158.35368
- [23] N. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech.17 (1967), 473-484. Zbl0163.36402MR216286
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.