On the isoperimetric inequality for minimal surfaces
Peter Li, Richard Schoen, Shing-Tung Yau (1984)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Peter Li, Richard Schoen, Shing-Tung Yau (1984)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Jürgen Jost (1986)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Jürgen Jost (1986)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Alexander G. Reznikov (1992)
Publicacions Matemàtiques
Similarity:
We show that the apparatus of support functions, usually used in convex surfaces theory, leads to the linear equation Δh + 2h = 0 describing locally germs of minimal surfaces. Here Δ is the Laplace-Beltrami operator on the standard two-dimensional sphere. It explains the existence of the sum operator of minimal surfaces, introduced recently. In 4-dimensional space the equation Δ h + 2h = 0 becomes inequality wherever the Gauss curvature of a minimal hypersurface is nonzero.
M. Grüter, J. Jost (1986)
Annales de l'I.H.P. Analyse non linéaire
Similarity: