The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time

Massimo Cicognani

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)

  • Volume: 18, Issue: 1, page 39-66
  • ISSN: 0391-173X

How to cite

top

Cicognani, Massimo. "The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.1 (1991): 39-66. <http://eudml.org/doc/84095>.

@article{Cicognani1991,
author = {Cicognani, Massimo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {refraction; Gevrey singularities; propagation of singularities},
language = {eng},
number = {1},
pages = {39-66},
publisher = {Scuola normale superiore},
title = {The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time},
url = {http://eudml.org/doc/84095},
volume = {18},
year = {1991},
}

TY - JOUR
AU - Cicognani, Massimo
TI - The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 1
SP - 39
EP - 66
LA - eng
KW - refraction; Gevrey singularities; propagation of singularities
UR - http://eudml.org/doc/84095
ER -

References

top
  1. [1] L. Cattabriga - D. Mari, Parametrix of infinite order on Gevrey spaces to the Cauchy problem for hyperbolic operators with one multiple characteristic, Ricerche Mat., suppl. (1987), 127-147. Zbl0676.35052MR956023
  2. [2] L. Cattabriga - L. Zanghirati, Fourier integral operators of infinite order on Gevrey spaces applications to the Cauchy problem for certain hyperbolic operators, J. Math. Kyoto30 (1990), 149-192. Zbl0725.35113MR1041717
  3. [3] M. Cicognani, The propagation of Gevrey singularities for some hyperbolic operators with coefficients Hölder continuous with respect to time, Res. Notes in Math., Pitman Series 183, 38-58. Zbl0738.35042MR984358
  4. [4] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dependent que du temp, Ann. Scuola Norm. Sup. Pisa, 6 (1979), 511-559. Zbl0417.35049MR553796
  5. [5] F. Colombini - E. Jannelli - S. Spagnolo, Well-posedness in the Gevrey classes for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), 291-312. Zbl0543.35056MR728438
  6. [6] S. Hashimoto - T. Matsuzawa - Y. Morimoto, Opérateurs pseudo-différentiels et classes de Gevrey, Comm. Partial Differential Equations8 (1983), 1277-1289. Zbl0525.35086MR711439
  7. [7] V. Iftimie, Opérateurs hypoelliptiques dans des éspaces de Gevrey, Bull. Soc. Sc. Math. R.S. Roumanil27 (1983), 317-333. Zbl0551.35085MR744739
  8. [8] E. Jannelli, Gevrey well-posedness for a class of weakly hyperbolic equation, J. Math. Kyoto Univ., 24(4), (1984), 763-778. Zbl0582.35070MR775986
  9. [9] K. Kajitani, Fundamental solution of Cauchy problem for hyperbolic systems and Gevrey classes, Tsukuba OJ. Math.1 (1977), 163-193. Zbl0402.35068MR481569
  10. [10] H. Komatsu, Ultradistributions III-Vector valued ultradistributions and the theory of Kernels, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), 653-718. Zbl0507.46035MR687595
  11. [11] H. Kumano-Go, Pseudo Differential Operators, M.I.T. press, 1981. Zbl0489.35003
  12. [12] S. Mizohata, Propagation de la regularité au sense de Gevrey par les opérateurs différentiels à multiplicité constante, J. Vaillant, Séminaire équations aux dériveés partielles hyperboliques et holomorphes, HermannParis, 1984, 106-133. Zbl0546.35082MR747659
  13. [13] Y. Morimoto, Fundamental solution for a hyperbolic equation with involutive characteristics of variable multiplicity, Comm. Partial Differential Equations, 4(6), (1979), 609-643. Zbl0447.35052MR532579
  14. [14] T. Nishitani, Sur les équations hyperboliques à coefficients qui sont hölderiens en t et de la classe de Gevrey en x, Bull. Sci. Mat., 107 (1983), 113-138. Zbl0536.35042MR704720
  15. [15] J.C. Nosmas, Parametrix du problème de Cauchy pour une classe de systèmes hyperboliques a caractéristiques involutives de multiplicité variable, Comm. Partial Differential Equations, 5(1), (1980), 1-22. Zbl0437.35045MR556452
  16. [16] Y. Ohya - S. Tarama, Le problème de Cauchy a caractéristiques multiples dans la class de Gevrey; coefficients hölderiens en t, to appear. 
  17. [17] K. Taniguchi, Fourier Integral Operators in Gevrey Class on Rn and the Fundamental Solution for a Hyperbolic Operator, Publ. RIMS, Kyoto Univ.20 (1984), 491-542. Zbl0574.35082MR759680
  18. [18] K. Taniguchi, Multi-products of Fourier integral operators and the fundamental solution for a hyperbolic system with involutive characteristics, Osaka J. Math.21(1), (1984), 169-224. Zbl0546.35079MR736977
  19. [19] K. Taniguchi - Y. Morimoto, Propagation of wave front sets of solutions of the Cauchy problem for hyperbolic equations in Gevrey classes, Osaka J. Math., 23(4), (1986), 765-814. Zbl0631.35052MR873208
  20. [20] L. Zanghirati.Pseudo-differential operators of infinite order and Gevrey classes, Ann. Univ. Ferrara, Sez. VII, 31 (1985), 197-219. Zbl0601.35110MR841860

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.