The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)
- Volume: 18, Issue: 1, page 39-66
- ISSN: 0391-173X
Access Full Article
topHow to cite
topCicognani, Massimo. "The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.1 (1991): 39-66. <http://eudml.org/doc/84095>.
@article{Cicognani1991,
author = {Cicognani, Massimo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {refraction; Gevrey singularities; propagation of singularities},
language = {eng},
number = {1},
pages = {39-66},
publisher = {Scuola normale superiore},
title = {The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time},
url = {http://eudml.org/doc/84095},
volume = {18},
year = {1991},
}
TY - JOUR
AU - Cicognani, Massimo
TI - The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 1
SP - 39
EP - 66
LA - eng
KW - refraction; Gevrey singularities; propagation of singularities
UR - http://eudml.org/doc/84095
ER -
References
top- [1] L. Cattabriga - D. Mari, Parametrix of infinite order on Gevrey spaces to the Cauchy problem for hyperbolic operators with one multiple characteristic, Ricerche Mat., suppl. (1987), 127-147. Zbl0676.35052MR956023
- [2] L. Cattabriga - L. Zanghirati, Fourier integral operators of infinite order on Gevrey spaces applications to the Cauchy problem for certain hyperbolic operators, J. Math. Kyoto30 (1990), 149-192. Zbl0725.35113MR1041717
- [3] M. Cicognani, The propagation of Gevrey singularities for some hyperbolic operators with coefficients Hölder continuous with respect to time, Res. Notes in Math., Pitman Series 183, 38-58. Zbl0738.35042MR984358
- [4] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dependent que du temp, Ann. Scuola Norm. Sup. Pisa, 6 (1979), 511-559. Zbl0417.35049MR553796
- [5] F. Colombini - E. Jannelli - S. Spagnolo, Well-posedness in the Gevrey classes for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), 291-312. Zbl0543.35056MR728438
- [6] S. Hashimoto - T. Matsuzawa - Y. Morimoto, Opérateurs pseudo-différentiels et classes de Gevrey, Comm. Partial Differential Equations8 (1983), 1277-1289. Zbl0525.35086MR711439
- [7] V. Iftimie, Opérateurs hypoelliptiques dans des éspaces de Gevrey, Bull. Soc. Sc. Math. R.S. Roumanil27 (1983), 317-333. Zbl0551.35085MR744739
- [8] E. Jannelli, Gevrey well-posedness for a class of weakly hyperbolic equation, J. Math. Kyoto Univ., 24(4), (1984), 763-778. Zbl0582.35070MR775986
- [9] K. Kajitani, Fundamental solution of Cauchy problem for hyperbolic systems and Gevrey classes, Tsukuba OJ. Math.1 (1977), 163-193. Zbl0402.35068MR481569
- [10] H. Komatsu, Ultradistributions III-Vector valued ultradistributions and the theory of Kernels, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), 653-718. Zbl0507.46035MR687595
- [11] H. Kumano-Go, Pseudo Differential Operators, M.I.T. press, 1981. Zbl0489.35003
- [12] S. Mizohata, Propagation de la regularité au sense de Gevrey par les opérateurs différentiels à multiplicité constante, J. Vaillant, Séminaire équations aux dériveés partielles hyperboliques et holomorphes, HermannParis, 1984, 106-133. Zbl0546.35082MR747659
- [13] Y. Morimoto, Fundamental solution for a hyperbolic equation with involutive characteristics of variable multiplicity, Comm. Partial Differential Equations, 4(6), (1979), 609-643. Zbl0447.35052MR532579
- [14] T. Nishitani, Sur les équations hyperboliques à coefficients qui sont hölderiens en t et de la classe de Gevrey en x, Bull. Sci. Mat., 107 (1983), 113-138. Zbl0536.35042MR704720
- [15] J.C. Nosmas, Parametrix du problème de Cauchy pour une classe de systèmes hyperboliques a caractéristiques involutives de multiplicité variable, Comm. Partial Differential Equations, 5(1), (1980), 1-22. Zbl0437.35045MR556452
- [16] Y. Ohya - S. Tarama, Le problème de Cauchy a caractéristiques multiples dans la class de Gevrey; coefficients hölderiens en t, to appear.
- [17] K. Taniguchi, Fourier Integral Operators in Gevrey Class on Rn and the Fundamental Solution for a Hyperbolic Operator, Publ. RIMS, Kyoto Univ.20 (1984), 491-542. Zbl0574.35082MR759680
- [18] K. Taniguchi, Multi-products of Fourier integral operators and the fundamental solution for a hyperbolic system with involutive characteristics, Osaka J. Math.21(1), (1984), 169-224. Zbl0546.35079MR736977
- [19] K. Taniguchi - Y. Morimoto, Propagation of wave front sets of solutions of the Cauchy problem for hyperbolic equations in Gevrey classes, Osaka J. Math., 23(4), (1986), 765-814. Zbl0631.35052MR873208
- [20] L. Zanghirati.Pseudo-differential operators of infinite order and Gevrey classes, Ann. Univ. Ferrara, Sez. VII, 31 (1985), 197-219. Zbl0601.35110MR841860
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.