Limit semigroups of Stancu-Mühlbach operators associated with positive projections

Michele Campiti

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)

  • Volume: 19, Issue: 1, page 51-67
  • ISSN: 0391-173X

How to cite

top

Campiti, Michele. "Limit semigroups of Stancu-Mühlbach operators associated with positive projections." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.1 (1992): 51-67. <http://eudml.org/doc/84118>.

@article{Campiti1992,
author = {Campiti, Michele},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Stancu-Mühlbach operators; operators generated by a positive projection on -spaces},
language = {eng},
number = {1},
pages = {51-67},
publisher = {Scuola normale superiore},
title = {Limit semigroups of Stancu-Mühlbach operators associated with positive projections},
url = {http://eudml.org/doc/84118},
volume = {19},
year = {1992},
}

TY - JOUR
AU - Campiti, Michele
TI - Limit semigroups of Stancu-Mühlbach operators associated with positive projections
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 1
SP - 51
EP - 67
LA - eng
KW - Stancu-Mühlbach operators; operators generated by a positive projection on -spaces
UR - http://eudml.org/doc/84118
ER -

References

top
  1. [1] F. Altomare, Teoremi di approssimazione di tipo Korovkin in spazi di funzioni, Rend. Mat., (6), 13 (1980), no. 3, 409-429. Zbl0455.41010
  2. [2] F. Altomare, Limit Semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Serie IV, (16) 2 (1989), 259-279. Zbl0706.47022MR1041898
  3. [3] M. Campiti, A generalization of Stancu-Mühlbach operators, Constr. Approx.7 (1991), 1-18. Zbl0724.41019MR1082208
  4. [4] L. Comtet, Analyse combinatoire II, Presses Universitaires de France, Paris, 1970. Zbl0221.05001MR262087
  5. [5] G. Felbecker, Approximation und Interpolation auf Räumen Radonscher Wahrscheinlichkeitsmaße, Dissertation, Bochum, 1972. 
  6. [6] G. Felbecker, Über Verallgemeinerte Stancu-Mühlbach-Operatoren, Numer. Anal.53 (1973), 188-189. Zbl0262.41032MR342917
  7. [7] S. Karlin - Z. Ziegler, Iteration of positive approximation operators, J. Approx. Theory3 (1970), 310-339. Zbl0199.44702MR277982
  8. [8] G.G. Lorentz, Bernstein polynomials, University Press, Toronto, 1953. Zbl0051.05001MR57370
  9. [9] C.A. Micchelli, The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. Zbl0258.41012MR344757
  10. [10] T. Nishishiraho, Saturation of bounded linear operators, Tôhoku Math. J.30 (1978), 69-81. Zbl0379.41013MR493510
  11. [11] T. Nishishiraho, The convergence and saturation of iterations of positive linear operators, Math. Z.194, 397-404 (1987). Zbl0596.41036MR879940
  12. [12] R. Schnabl, Zum Saturationsproblem der verallgemeinerten Bernsteinoperatoren, Proc. Conf. on "Abstract spaces and approximation" held at Oberwolfach, July 18-27, 1968, edited by P.L. Butzer and B.Sz.-Nagy, BirkhäuserBasel, 1969, 281-289. Zbl0186.37901MR271610
  13. [13] R. Schnabl, Über gleichmäßige Approximation durch positive lineare Operatoren, Constructive theory of functions (Proc. Internal. Conf. Varna, 1970) 287-296, Izdat. Bolgar. Akad. Nauk Sofia, 1972. Zbl0239.46054MR370012
  14. [14] H.F. Trotter, Approximation of semi-groups of operators, Pacific J. Math.8 (1958), 887-919. Zbl0099.10302MR103420

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.