Limit semigroups of Stancu-Mühlbach operators associated with positive projections
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)
- Volume: 19, Issue: 1, page 51-67
- ISSN: 0391-173X
Access Full Article
topHow to cite
topCampiti, Michele. "Limit semigroups of Stancu-Mühlbach operators associated with positive projections." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.1 (1992): 51-67. <http://eudml.org/doc/84118>.
@article{Campiti1992,
author = {Campiti, Michele},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Stancu-Mühlbach operators; operators generated by a positive projection on -spaces},
language = {eng},
number = {1},
pages = {51-67},
publisher = {Scuola normale superiore},
title = {Limit semigroups of Stancu-Mühlbach operators associated with positive projections},
url = {http://eudml.org/doc/84118},
volume = {19},
year = {1992},
}
TY - JOUR
AU - Campiti, Michele
TI - Limit semigroups of Stancu-Mühlbach operators associated with positive projections
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 1
SP - 51
EP - 67
LA - eng
KW - Stancu-Mühlbach operators; operators generated by a positive projection on -spaces
UR - http://eudml.org/doc/84118
ER -
References
top- [1] F. Altomare, Teoremi di approssimazione di tipo Korovkin in spazi di funzioni, Rend. Mat., (6), 13 (1980), no. 3, 409-429. Zbl0455.41010
- [2] F. Altomare, Limit Semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Serie IV, (16) 2 (1989), 259-279. Zbl0706.47022MR1041898
- [3] M. Campiti, A generalization of Stancu-Mühlbach operators, Constr. Approx.7 (1991), 1-18. Zbl0724.41019MR1082208
- [4] L. Comtet, Analyse combinatoire II, Presses Universitaires de France, Paris, 1970. Zbl0221.05001MR262087
- [5] G. Felbecker, Approximation und Interpolation auf Räumen Radonscher Wahrscheinlichkeitsmaße, Dissertation, Bochum, 1972.
- [6] G. Felbecker, Über Verallgemeinerte Stancu-Mühlbach-Operatoren, Numer. Anal.53 (1973), 188-189. Zbl0262.41032MR342917
- [7] S. Karlin - Z. Ziegler, Iteration of positive approximation operators, J. Approx. Theory3 (1970), 310-339. Zbl0199.44702MR277982
- [8] G.G. Lorentz, Bernstein polynomials, University Press, Toronto, 1953. Zbl0051.05001MR57370
- [9] C.A. Micchelli, The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. Zbl0258.41012MR344757
- [10] T. Nishishiraho, Saturation of bounded linear operators, Tôhoku Math. J.30 (1978), 69-81. Zbl0379.41013MR493510
- [11] T. Nishishiraho, The convergence and saturation of iterations of positive linear operators, Math. Z.194, 397-404 (1987). Zbl0596.41036MR879940
- [12] R. Schnabl, Zum Saturationsproblem der verallgemeinerten Bernsteinoperatoren, Proc. Conf. on "Abstract spaces and approximation" held at Oberwolfach, July 18-27, 1968, edited by P.L. Butzer and B.Sz.-Nagy, BirkhäuserBasel, 1969, 281-289. Zbl0186.37901MR271610
- [13] R. Schnabl, Über gleichmäßige Approximation durch positive lineare Operatoren, Constructive theory of functions (Proc. Internal. Conf. Varna, 1970) 287-296, Izdat. Bolgar. Akad. Nauk Sofia, 1972. Zbl0239.46054MR370012
- [14] H.F. Trotter, Approximation of semi-groups of operators, Pacific J. Math.8 (1958), 887-919. Zbl0099.10302MR103420
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.