The Stefan problem with kinetic condition at the free boundary
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)
- Volume: 19, Issue: 1, page 87-111
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFriedman, Avner, and Hu, Bei. "The Stefan problem with kinetic condition at the free boundary." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.1 (1992): 87-111. <http://eudml.org/doc/84120>.
@article{Friedman1992,
author = {Friedman, Avner, Hu, Bei},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Laplace equation; kinetic undercooling; unique global solution; a-priori estimates},
language = {eng},
number = {1},
pages = {87-111},
publisher = {Scuola normale superiore},
title = {The Stefan problem with kinetic condition at the free boundary},
url = {http://eudml.org/doc/84120},
volume = {19},
year = {1992},
}
TY - JOUR
AU - Friedman, Avner
AU - Hu, Bei
TI - The Stefan problem with kinetic condition at the free boundary
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 1
SP - 87
EP - 111
LA - eng
KW - Laplace equation; kinetic undercooling; unique global solution; a-priori estimates
UR - http://eudml.org/doc/84120
ER -
References
top- [1] J.N. Dewynne - S.D. Howison - J.R. Ockendon - W. Xie, Asymptotic behavior of solutions to the Stefan problem with a kinetic condition at free boundary, J. Austral. Math. Soc. Ser. B, 31 (1989), 81-96. Zbl0713.35102MR1002093
- [2] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J. (1964). Zbl0144.34903MR181836
- [3] A. Friedman, Mathematics in Industrial Problems, Part 4, Springer-Verlag, Heidelberg (1991). Zbl0758.00004MR1128091
- [4] K. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand, 21 (1967), 17-37. Zbl0164.13101MR239264
- [5] W. Xie, The Stefan problem with a kinetic condition at the free boundary, SIAM J. Math. Anal, 21 (1990), 362-373. Zbl0737.35165MR1038897
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.