Uniform foliation associated with the hamiltonian system n

Hironobu Kimura

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 1, page 1-60
  • ISSN: 0391-173X

How to cite

top

Kimura, Hironobu. "Uniform foliation associated with the hamiltonian system $\mathcal {H}_n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.1 (1993): 1-60. <http://eudml.org/doc/84142>.

@article{Kimura1993,
author = {Kimura, Hironobu},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {uniform foliation; Hamiltonian system; geometric interpretation; completely integrable Pfaffian system; Hirzebruch surface; set of singular points; accessible singularity},
language = {eng},
number = {1},
pages = {1-60},
publisher = {Scuola normale superiore},
title = {Uniform foliation associated with the hamiltonian system $\mathcal \{H\}_n$},
url = {http://eudml.org/doc/84142},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Kimura, Hironobu
TI - Uniform foliation associated with the hamiltonian system $\mathcal {H}_n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 1
SP - 1
EP - 60
LA - eng
KW - uniform foliation; Hamiltonian system; geometric interpretation; completely integrable Pfaffian system; Hirzebruch surface; set of singular points; accessible singularity
UR - http://eudml.org/doc/84142
ER -

References

top
  1. [AKF] P. Appell - J. Kampé De Fériet, Fonctions hypergéométriques et hypersphériqiues, Gauthier Villars, Paris, 1926. JFM52.0361.13
  2. [Bout] P. Boutroux, Recherches sur les transcendantes de M. Painlevé et l' étude asymptotique des équations différentielles du second ordre, Ann. Sci. Éeole Norm. Sup., (3) 30 (1913), 255-375; (3) 31 (1914), 99-159. Zbl44.0382.02MR1509163JFM44.0382.02
  3. [Bur] F.J. Bureau, Équations différentielles du second ordre en Y et du second degré en dont l'integrale générale est à points critiques fixes, ibid., 91 (1972), 163-281. Zbl0276.34027MR310318
  4. [Chaz] J. Chazy, Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale a ses points critiques fixes, Acta. Math., 34 (1911), 317-385. Zbl42.0340.03JFM42.0340.03
  5. [FucR] R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endrichen gelegene wesentlich singulären, Stellen, Math., 63 (1907), 301-321. Zbl38.0362.01MR1511408JFM38.0362.01
  6. [Gamb] B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l'intégral générale est à points critiques fixes, Acta. Math.33 (1910), 1-55. JFM40.0377.02
  7. [Gar1] R. Garnier, Sur des équations différentielles du troisiéme ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses point critiques fixes, Ann. Sci. Éeole Norm. Sup., 29 (1912), 1-126. Zbl43.0382.01MR1509146JFM43.0382.01
  8. [Gar2] R. Garnier, Etude de l'intégrale générale de l'équation VI de M. Painlevé, Ann. Sci. Éeole Norm. Sup., (3) série, 34 (1917), 239-353. Zbl46.0667.04MR1509205JFM46.0667.04
  9. [Gar3] R. Garnier, Contribution à l'étude des solutions de l'équation (V) de Painlevé, J. Math. Pures Appl., 46 (1968), 353-413. Zbl0165.41503MR229884
  10. [Gel] I.M. Gelfand, General theory of hypergeometric functions, Soviet Math. Dokl., 33 (1986), 573-577. Zbl0645.33010MR841131
  11. [Hirz] F. Hirzebruch, Uber eine Klasse von einfach zusammenhngenden Komplexen Mannigfaltigkeiten, Math. Ann., 124 (1951), 77-86. Zbl0043.30302MR45384
  12. [Inc] E.L. Ince, Ordinary Differential Equations, Dover, 1956. Zbl0063.02971MR10757
  13. [Iws] K. Iwasaki, Moduli and deformation for Fuchsian projective connections on a Riemann surface, Univ. Tokyo preprint 89-16. MR1146359
  14. [Jimb] M. Jimbo, Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci., 18 (1982), 1137-1161. Zbl0535.34042MR688949
  15. [JMU] M. Jimbo - T. Miwa - K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I, Phys. D, 2 (1981), 306-352. Zbl1194.34167MR630674
  16. [JM] M. Jimbo - T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II, Phys. D, 2 (1981), 407-448. Zbl1194.34166MR625446
  17. [KimH1] H. Kimura, On the isomonodromic deformation of linear ordinary differential equations of the third order, Proc. Japan Acad., 57 (1981), 446-449. Zbl0549.34011
  18. [KimH2] H. Kimura, The construction of a general solution of a Hamiltonian system with regular type singularity and its application to Painlevé equations, Ann. Mat. Pura Appl., 134 (1983), 363-392. Zbl0532.70013MR736747
  19. [KimH3] H. Kimura, The degeneration of the two dimensional Garnier system and the polynomial Hamiltonian structure, Ann. Mat. Pura Appl.155 (1989), 25-74. Zbl0693.34043MR1042827
  20. [KimH4] H. Kimura, Generalization of Hirzebruch surface to 2n-dimensional manifold, (preprint). 
  21. [KimH5] H. Kimura, Symmetries of the Garnier system and of the associated polynomial Hamiltonian system, preprint, Tokyo Univ., (1990). MR1078402
  22. [KimH6] H. Kimura, Symmetries of the Hamiltonian system Hn and of the hypergeometric equation for FD, preprint, Tokyo Univ., (1990). MR1078402
  23. [KO1] H. Kimura - K. Okamoto, On the isomonodromic deformation of linear ordinary differential equations of higher order, Funkcial. Ekvac., 26 (1983), 37-50. Zbl0544.34005MR719085
  24. [KO2] H. Kimura - K. Okamoto, On the polynomial Hamiltonian structure of the Garnier systems, J. Math. Pures Appl., 63 (1984), 129-146. Zbl0562.34004MR776915
  25. [Kod] K. Kodaira, Complex manifolds and deformation of complex analytic structures, Lecture Note, Tokyo Univ. (in Japanese). 
  26. [MTW] B.M. Maccoy - C.A. Tracy - T.T. Wu, Painlevé functions of the third kind, J. Math. Phys., 18 (1977), 1058-1092. Zbl0353.33008MR473322
  27. [Malg] B. Malgrange, Sur les déformation isomonodromiques, I, Singularités régulierès, séminaire E.N.S. Birkhäuser, 1982. Zbl0528.32017MR728431
  28. [Mal] J. Malmquist, Sur les équations différentielles du second ordre dont l'intégrale générale a ses points critiques fixes, Ark. Mat. Astr. Fys., 17 (1922-23), 1-89. JFM49.0305.02
  29. [Miw] T. Miwa, Painlevé property of monodromy preserving deformation equations and the analycity of T functions, Publ. Res. Inst. Math. Sci., 17 (1981), 703-721. Zbl0605.34005MR642657
  30. [Mur1] Y Murata, Rational solutions of the second and the fourth Painlevé equations, Funkcial. Ekvac., 28 (1985), 1-32. Zbl0597.34004MR803400
  31. [Nis.2] K. Nishioka, A note on the transcendency of Painlevé first transcendent, Nagoya Math. J., 109 (1988), 63-67. Zbl0613.34030MR931951
  32. [Okm.1] K. Okamoto, Sur les feuilletages associé aux équations du second ordre à points critiques fixes de P. Painlevé, Japan J. Math., 5 (1979), 1-79. Zbl0426.58017MR614694
  33. [Okm.2] K. Okamoto, Isomonodromic deformation and Painlevé equations and the Gamier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33 (1986), 575-618. Zbl0631.34011MR866050
  34. [Okm.3] K. Okamoto, Studies on the Painlevé equations, I, Ann. Mat. Pura Appl., 146 (1987), 337-381; II, Japan J. Math., 13 (1987), 47-76; III, Math. Ann., 275 (1986), 221-256; IV, Funkcial. Ekvac., 30 (1987), 305-332. MR927186
  35. [OK] H. Kimura - K. Okamoto, On particular solutions of Garnier systems and the hypergeometric functions of several variables, Quart. J. Math., 37 (1986), 61-80. Zbl0597.35114MR830631
  36. [Pain] P. Painlevé, Œuvres t. I, II, III, CNRS, Paris, 1976. 
  37. [R] B.L. Reinhart, Differential Geometry of Foliations, Springer-Verlag, 1983. Zbl0506.53018MR705126
  38. [Schl] L. Schlesinger, Über eine Klasse von differentialsystemen beliebliger Ordnung mit festen Kritischer Punkten, J. für Math., 141 (1912), 96-145. Zbl43.0385.01JFM43.0385.01
  39. [Shim.1] S. Shimomura, Series expansions of Painlevé transcendents in the neighbourhood of a fixed singular points, Funkcial. Ekvac., 25 (1982), 185-197. Zbl0506.34010MR694911
  40. [Shim.2] S. Shimomura, Supplement to "Series expansions of Painlevé transcendents in the neighbourhood of a fixed singular points", Funkcial. Ekvac., 25 (1982), 363-371. Zbl0533.34006MR707567
  41. [Tak.1] K. Takano, A 2-parameter family of solutions of Painlevé equation (V) near the point at infinity, Funkcial. Ekvac., 26 (1983), 79-113. Zbl0528.34005MR719087
  42. [Tak.2] K. Takano, Reduction for Painlevé equations at the fixed singular points of the first kind, Funkcial. Ekvac., 29 (1986), 99-119. Zbl0602.34004MR865217
  43. [Ume.1] H. Umemura, Birational automorphism groups and differential equations, (colloque franco-japonais)Publications IRMA, (1989). MR1071899
  44. [Ume.2] H. Umemura, On the irreducibility of the first differential equation of Painlevé, Algebraic geometry and Commutative algebra in honor of Masayoshi Nagata, (1987), 101-119. Zbl0704.12007MR977782
  45. [Ume.3] H. Umemura, On the second proof of the irreducibility of the first differential equation of Painlevé, Kumamoto Univ. preprint (1988). MR1044939
  46. [YIKS] M. Yoshida - K. Iwasaki - H. Kimura - S. Shimomura, Gauss to Painlevé, Vieweg Verlag, Wiesbaden, 1990. Zbl0743.34014
  47. [YosM] M. Yoshida, Fuchsian differential equations, Vieweg Verlag, Wiesbaden, 1987. Zbl0618.35001MR986252
  48. [YosS] S. Yoshida, A 2-parameter family of solutions of Painlevé equations (I)-(V) at an irregular singular point, Funkcial. Ekvac., 28 (1985), 233-248. Zbl0592.34036MR816829

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.