About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. II : exact controllability

Serge Nicaise[1]

  • [1] Université de Valenciennes et du Hainaut Cambrésis, MACS, Le Mont Houy, 59313 Valenciennes Cedex 9, France. http://www.univ-valenciennes.fr/macs/Serge.Nicaise

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 2, page 163-191
  • ISSN: 0391-173X

How to cite

top

Nicaise, Serge. "About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. II : exact controllability." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.2 (1993): 163-191. <http://eudml.org/doc/84145>.

@article{Nicaise1993,
affiliation = {Université de Valenciennes et du Hainaut Cambrésis, MACS, Le Mont Houy, 59313 Valenciennes Cedex 9, France. http://www.univ-valenciennes.fr/macs/Serge.Nicaise},
author = {Nicaise, Serge},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {dynamical problems; regularity; real Hilbert spaces; weak solution; crack},
language = {eng},
number = {2},
pages = {163-191},
publisher = {Scuola normale superiore},
title = {About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. II : exact controllability},
url = {http://eudml.org/doc/84145},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Nicaise, Serge
TI - About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. II : exact controllability
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 2
SP - 163
EP - 191
LA - eng
KW - dynamical problems; regularity; real Hilbert spaces; weak solution; crack
UR - http://eudml.org/doc/84145
ER -

References

top
  1. [1] R.A. Adams, Sobolev spaces, Academic Press, 1975. Zbl0314.46030MR450957
  2. [2] H. Blum - R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Math. in the Appl. Sc., 2, 1980, pp. 556-581. Zbl0445.35023MR595625
  3. [3] P.G. Ciarlet - H. Le Dret - R. Nzengwa, Junctions between three-dimension and two-dimensional linearly elastic structures, J. Math. Pures Appl., 68, 1989, pp. 261-295. Zbl0661.73013MR1025905
  4. [4] M. Dauge, Elliptic boundary value problems on comer domains, Lecture Notes in Math., 1341, Springer-Verlag, 1988. Zbl0668.35001MR961439
  5. [5] M. Dauge, Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners. I: Linearized equations, SIAM J. Math. Anal., 20, 1989, pp. 74-97. Zbl0681.35071MR977489
  6. [6] T. Gobert, Une inégalité fondamentale de la théorie de l'élasticité, Bull. Soc. Roy. Sci. Liège, 3-4, 1962, pp. 182-191. Zbl0112.38902
  7. [7] P. Grisvard, Théorèmes de traces relatifs à un polyèdre, C.R. Acad. Sci. Paris, Sér. A, 278, 1974, pp. 1581-1583. Zbl0296.46038MR352963
  8. [8] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and studies in Math., 24, Pitman, 1985. Zbl0695.35060MR775683
  9. [9] P. Grisvard, Problèmes aux limites dans les polygones, mode d'emploi, Bulletin de la direction des études et recherches de l'E.D.F., Sér. C, 1, 1986, pp. 21-59. Zbl0623.35031MR840970
  10. [10] P. Grisvard, Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités, J. Math. Pures Appl., 68, 1989, pp. 215-259. Zbl0683.49012MR1010769
  11. [11] P. Grisvard, Singulatirés en élasticité, Arch. Rational Mech. Anal., 107, 1989, pp. 157-180. Zbl0706.73013MR996909
  12. [12] V.A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., 16, 1967, pp. 227-313. Zbl0194.13405MR226187
  13. [13] V.A. Kozlov - V.G. Maz'ya, Spectral properties of the operator bundles generated by elliptic boundary value problems in a cone, Functional Anal. Appl., 22, 1988, pp. 114-121. Zbl0672.35050MR947604
  14. [14] V.A. Kozlov - V.G. Maz'ya - C. Schwab, On the first boundary value problem of 3-D elasticity on conical domains, Preprint University of Maryland, 1989. 
  15. [15] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, tome 1, RMA 8, Masson, 1988. Zbl0653.93002MR953547
  16. [16] R. Lozi, Résultats numériques de régularité du problème de Stokes et du laplacien itéré dans un polygone, RAIRO, Anal. Numér., 12, 1978, pp. 267-282. Zbl0385.65025MR509976
  17. [17] V.G. Maz'ya - B.A. Plamenevskii, Estimates in Lp and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary, Amer. Math. Soc. Transl. (2), 123, 1984, pp. 1-56. Zbl0554.35035
  18. [18] V.G. Maz'ya - B.A. Plamenevskii, On properties of solutions of three-dimensional problems of elasticity theory and hydrodynamics in domains with isolated singular points, Amer. Math. Soc. Transl. (2), 123, 1984, pp. 109-124. Zbl0597.73027
  19. [19] M.T. Niane, Contrôlabilité exacte de l'équation des plaques vibrantes dans un polygone, C.R. Acad. Sci. Paris, Sér. I, 307, 1988, pp. 517-521. Zbl0661.73034MR966254
  20. [20] S. Nicaise, Polygonal interface problems for the biharmonic operator, to appear in Math. Methods Appl. Sc. Zbl0820.35041MR1257586
  21. [21] S. Nicaise, Exact controllability of a pluridimensional coupled problem, to appear in Rev. Mat. Univ. Complut. Madrid. Zbl0760.35012MR1183428
  22. [22] S. Nicaise, About the Lamé system in a polygonal domain or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. I: Regularity of the solutions, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). Zbl0782.73041MR1205404
  23. [23] T. Von Petersdorff, Randwertprobleme der Elastizitätstheorie für polyeder-Singularitäten und approximation mit randelementmethoden, Thesis, Darmstadt (FRG), 1989. Zbl0709.73009
  24. [24] A.M. Sändig - U. Richter - R. Sändig, The regularity of boundary value problems for the Lamé equations in a polygonal domain, Rostock. Math. Kolloq., 36, 1989, pp. 21-50. Zbl0674.35024MR1006837
  25. [25] J.B. Seif, On the Green's function for the biharmonic equation in an infinite wedge, Trans. Amer. Math. Soc., 182, 1973, pp. 241-260. Zbl0271.31005MR325989

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.