Sous-ellipticité d'opérateurs intégro-différentiels vérifiant le principe du maximum

Claudy Cancelier; Jean-Yves Chemin

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 2, page 299-312
  • ISSN: 0391-173X

How to cite

top

Cancelier, Claudy, and Chemin, Jean-Yves. "Sous-ellipticité d'opérateurs intégro-différentiels vérifiant le principe du maximum." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.2 (1993): 299-312. <http://eudml.org/doc/84149>.

@article{Cancelier1993,
author = {Cancelier, Claudy, Chemin, Jean-Yves},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {subelliptic operator; maximum principle; pseudo-differential operators; second order operators},
language = {fre},
number = {2},
pages = {299-312},
publisher = {Scuola normale superiore},
title = {Sous-ellipticité d'opérateurs intégro-différentiels vérifiant le principe du maximum},
url = {http://eudml.org/doc/84149},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Cancelier, Claudy
AU - Chemin, Jean-Yves
TI - Sous-ellipticité d'opérateurs intégro-différentiels vérifiant le principe du maximum
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 2
SP - 299
EP - 312
LA - fre
KW - subelliptic operator; maximum principle; pseudo-differential operators; second order operators
UR - http://eudml.org/doc/84149
ER -

References

top
  1. [1] P. Bolley - J. Camus - J. Nourrigat, La condition de Hörmander-Kohn pour les opérateurs pseudo-différentiels, Comm. Partial Differential Equations, 7 (2) (1982), 197-221. Zbl0497.35086MR646136
  2. [2] J.-M. Bony - P. Courrège - P. Priouret, Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum, Ann. Inst. Fourier, Grenoble, 18, 2 (1968), 369-521. Zbl0181.11704MR245085
  3. [3] C.E. Cancelier, Problèmes aux limites pseudo-différentiels donnant lieu au principe du maximum, Comm. Partial Differential Equations, 11 (15) (1986), 1677-1726. Zbl0646.35080MR871109
  4. [4] F. Gimbert - P.L. Lions, Existence and regularity results for solutions of second order, elliptic, integro-differential operators, Ricerche Mat., vol. XXXIII, 2 (1984). Zbl0579.45010MR810193
  5. [5] L. Hörmander, Hypoelliptic second order differential equations, Acta Math.119 (1967), 147-171. Zbl0156.10701MR222474
  6. [6] L. Hörmander, The analysis of linear partial differential operators IV, Springer-Verlag, 1985. Zbl0612.35001MR781537
  7. [7] J.J. Kohn, Pseudo-differential operators and non-elliptic problems, Pseudo differential operators (C.I.M.E.Stresa, 1968), Edizioni Cremonese, Rome, 1969, 157-165 MR 41 # 3972. MR259334
  8. [8] H. Kumano-Go, A calculus of Fourier integral operators on Rn and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations, 1 (1) (1976), 1-44. Zbl0331.42012MR397482
  9. [9] J.L. Lions - J. Peetre, Sur une classe d'espaces d'interpolation. Institut des Hautes Etudes Scientifiques, Publications mathématiques n° 19, 1964. Zbl0148.11403
  10. [10] R. Mikulevicius - H. Pragarauskas, On the existence and uniqueness of solutions to the martingal problem, à paraître. Zbl0831.60067
  11. [11] J. Nourrigat, Subelliptic estimates for systems of pseudo-differential operators. Notas de curso, Instituto de Matemática, Universidad federal de Pernambuco, Recife1982. 
  12. [12] O.A. Oleinik - E.V. Radkevic, Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, Rhode Island, Plenum Press, 1973. MR457908
  13. [13] J.P. Serre, Lectures given at Harvard University, Lie algebras and Lie groups, W.A. Benjamin, Inc.New-YorkAmsterdam, 1965. Zbl0132.27803MR218496

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.