On the regularity of the stationary Navier-Stokes equations

Jens Frehse; Michael Růžička

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)

  • Volume: 21, Issue: 1, page 63-95
  • ISSN: 0391-173X

How to cite

top

Frehse, Jens, and Růžička, Michael. "On the regularity of the stationary Navier-Stokes equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.1 (1994): 63-95. <http://eudml.org/doc/84170>.

@article{Frehse1994,
author = {Frehse, Jens, Růžička, Michael},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {maximum solution; five-dimensional stationary Navier-Stokes equations; Moser's iteration technique},
language = {eng},
number = {1},
pages = {63-95},
publisher = {Scuola normale superiore},
title = {On the regularity of the stationary Navier-Stokes equations},
url = {http://eudml.org/doc/84170},
volume = {21},
year = {1994},
}

TY - JOUR
AU - Frehse, Jens
AU - Růžička, Michael
TI - On the regularity of the stationary Navier-Stokes equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 1
SP - 63
EP - 95
LA - eng
KW - maximum solution; five-dimensional stationary Navier-Stokes equations; Moser's iteration technique
UR - http://eudml.org/doc/84170
ER -

References

top
  1. [1] C.J. Amick - L.E. Fraenkel, Steady solutions of the Navier-Stokes equations representing plane flow in channels of variuous types. Acta Math.144 (1980), 83-152. Zbl0439.76018MR558092
  2. [2] L. Caffarelli - R. Kohn - L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math.35 (1985), 771-831. Zbl0509.35067MR673830
  3. [3] F. Chiarenza - M. Frasca, Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl.7 (1987), 273-279. Zbl0717.42023MR985999
  4. [4] C. Gerhardt, Stationary solutions to the Navier-Stokes equations in dimension four. Math. Z.165 (1979), 193-197. Zbl0405.35064MR520820
  5. [5] G.P. Galdi, An Introduction to the mathematical theory of Navier-Stokes equations, Vol. 1. Linearized stationary problems, Springer, New York, 1992/93. Zbl0949.35004MR1226511
  6. [6] G.P. Galdi, An Introduction to the mathematical theory of Navier-Stokes equations, Vol. 2. Nonlinear stationary problems, Springer, New York, 1992/93. Zbl0949.35005MR1226511
  7. [7] M. Giaquinta - G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math.330 (1982), 173-214. Zbl0492.35018MR641818
  8. [8] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order. Springer, New York, 1983. Zbl0562.35001MR737190
  9. [9] D. Gilbarg - H.F. Weinberger, Asymptotic properties of Leray's solution of the stationary two-dimensional Navier-Stokes equations. Russ. Math. Surv.29 (1974), 109-123. Zbl0304.35071MR481655
  10. [10] J. Leray, Sur le movement d'un liquide visqueux emplissant l'espace. Acta Math.63 (1934), 193-248. JFM60.0726.05
  11. [11] M. Struwe, On partial regularity results for the Navier-Stokes equations. Comm. Pure Appl. Math.41 (1988), 437-458. Zbl0632.76034MR933230
  12. [12] W. Von Wahl, The equations of Navier-Stokes and abstract parabolic equations. Vieweg, Braunschweig, 1985. Zbl0575.35074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.