On the regularity of the stationary Navier-Stokes equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)
- Volume: 21, Issue: 1, page 63-95
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFrehse, Jens, and Růžička, Michael. "On the regularity of the stationary Navier-Stokes equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.1 (1994): 63-95. <http://eudml.org/doc/84170>.
@article{Frehse1994,
author = {Frehse, Jens, Růžička, Michael},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {maximum solution; five-dimensional stationary Navier-Stokes equations; Moser's iteration technique},
language = {eng},
number = {1},
pages = {63-95},
publisher = {Scuola normale superiore},
title = {On the regularity of the stationary Navier-Stokes equations},
url = {http://eudml.org/doc/84170},
volume = {21},
year = {1994},
}
TY - JOUR
AU - Frehse, Jens
AU - Růžička, Michael
TI - On the regularity of the stationary Navier-Stokes equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 1
SP - 63
EP - 95
LA - eng
KW - maximum solution; five-dimensional stationary Navier-Stokes equations; Moser's iteration technique
UR - http://eudml.org/doc/84170
ER -
References
top- [1] C.J. Amick - L.E. Fraenkel, Steady solutions of the Navier-Stokes equations representing plane flow in channels of variuous types. Acta Math.144 (1980), 83-152. Zbl0439.76018MR558092
- [2] L. Caffarelli - R. Kohn - L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math.35 (1985), 771-831. Zbl0509.35067MR673830
- [3] F. Chiarenza - M. Frasca, Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl.7 (1987), 273-279. Zbl0717.42023MR985999
- [4] C. Gerhardt, Stationary solutions to the Navier-Stokes equations in dimension four. Math. Z.165 (1979), 193-197. Zbl0405.35064MR520820
- [5] G.P. Galdi, An Introduction to the mathematical theory of Navier-Stokes equations, Vol. 1. Linearized stationary problems, Springer, New York, 1992/93. Zbl0949.35004MR1226511
- [6] G.P. Galdi, An Introduction to the mathematical theory of Navier-Stokes equations, Vol. 2. Nonlinear stationary problems, Springer, New York, 1992/93. Zbl0949.35005MR1226511
- [7] M. Giaquinta - G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math.330 (1982), 173-214. Zbl0492.35018MR641818
- [8] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order. Springer, New York, 1983. Zbl0562.35001MR737190
- [9] D. Gilbarg - H.F. Weinberger, Asymptotic properties of Leray's solution of the stationary two-dimensional Navier-Stokes equations. Russ. Math. Surv.29 (1974), 109-123. Zbl0304.35071MR481655
- [10] J. Leray, Sur le movement d'un liquide visqueux emplissant l'espace. Acta Math.63 (1934), 193-248. JFM60.0726.05
- [11] M. Struwe, On partial regularity results for the Navier-Stokes equations. Comm. Pure Appl. Math.41 (1988), 437-458. Zbl0632.76034MR933230
- [12] W. Von Wahl, The equations of Navier-Stokes and abstract parabolic equations. Vieweg, Braunschweig, 1985. Zbl0575.35074
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.