Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains
Jens Frehse, Michael Růžička (1996)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Jens Frehse, Michael Růžička (1996)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Patrick Penel, Milan Pokorný (2004)
Applications of Mathematics
Similarity:
We study the nonstationary Navier-Stokes equations in the entire three-dimensional space and give some criteria on certain components of gradient of the velocity which ensure its global-in-time smoothness.
Zubelevich, Oleg (2005)
Lobachevskii Journal of Mathematics
Similarity:
Elva Ortega-Torres, Marko Rojas-Medar (2009)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
K. K. Golovkin, A. Krzywicki (1967)
Colloquium Mathematicae
Similarity:
Zujin Zhang, Chupeng Wu, Yong Zhou (2019)
Czechoslovak Mathematical Journal
Similarity:
This paper concerns improving Prodi-Serrin-Ladyzhenskaya type regularity criteria for the Navier-Stokes system, in the sense of multiplying certain negative powers of scaling invariant norms.
Zujin Zhang, Weijun Yuan, Yong Zhou (2019)
Applications of Mathematics
Similarity:
We review the developments of the regularity criteria for the Navier-Stokes equations, and make some further improvements.
Jishan Fan, Xuanji Jia, Yong Zhou (2019)
Applications of Mathematics
Similarity:
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.