A direct proof of a theorem by Kolmogorov in hamiltonian systems
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)
- Volume: 21, Issue: 4, page 541-593
- ISSN: 0391-173X
Access Full Article
topHow to cite
topChierchia, L., and Falcolini, C.. "A direct proof of a theorem by Kolmogorov in hamiltonian systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.4 (1994): 541-593. <http://eudml.org/doc/84192>.
@article{Chierchia1994,
author = {Chierchia, L., Falcolini, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Kolmogorov's theorem; quasi-periodic solutions; nearly integrable; Hamiltonian systems; Siegel's method},
language = {eng},
number = {4},
pages = {541-593},
publisher = {Scuola normale superiore},
title = {A direct proof of a theorem by Kolmogorov in hamiltonian systems},
url = {http://eudml.org/doc/84192},
volume = {21},
year = {1994},
}
TY - JOUR
AU - Chierchia, L.
AU - Falcolini, C.
TI - A direct proof of a theorem by Kolmogorov in hamiltonian systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 4
SP - 541
EP - 593
LA - eng
KW - Kolmogorov's theorem; quasi-periodic solutions; nearly integrable; Hamiltonian systems; Siegel's method
UR - http://eudml.org/doc/84192
ER -
References
top- [1] V.I. Arnold, Proof of A.N. Kolmogorov's theorem on the preservation of quasiperiodic motions under small perturbation of the Hamiltonian. Uspekhi Mat. Nauk18, No. 5 (1963), 13-40 (Russian); English translation: Russian Math. Surveys18, No. 5 (1963), 9-36. Zbl0129.16606MR163025
- [2] V.I. Arnold, Small denominators and problems of stability of motions in classical and celestial mechanics. Uspekhi Mat. Nauk18, No. 6 (1963), 91-192 (Russian); English translation: Russian Math. Surveys18, No. 6 (1963), 85-192. Zbl0135.42701MR170705
- [3] A. Berretti - L. Chierchia, On the complex analytic structure of the golden-mean invariant curve for the standard map. Nonlinearity3 (1990), 39-44. Zbl0732.58014MR1036436
- [4] A. Berretti - A. Celletti - L. Chierchia - C. Falcolini, Natural boundaries for area-preserving twist maps. J. Statist. Phys., 66 (1992), 1613-1630. Zbl0892.58062MR1156418
- [5] B. Bollobas, Graph Theory. Springer-Verlag (Graduate text in mathematics, 63), Berlin-Heidelberg-New York, 1979. Zbl0411.05032MR536131
- [6] A.D. Brjuno, Convergence of transformations of differential equations to normal form. Dokl. Akad. Nauk SSSR165 (1965), 987-989; Analytic form of differential equations, Trans. Moscow Math. Soc.25 (1971), 131-288 and 26 (1972), 199-239. Zbl0146.11301MR192098
- [7] A. Celetti - L. Chierchia, Construction of analytic KAM surfaces and effective stability bounds, Comm. Math. Phys.118 (1988), 119-161. Zbl0657.58032MR954678
- [8] L. Chierchia - G. Gallavotti, Drift and Diffusion in phase space, Preprint (1992). To appear in Ann. Inst. H. Poincaré Phys. Théor. Zbl1010.37039MR1259103
- [9] L. Chierchia - P. Perfetti, Second order Hamiltonian equations on T∞ and almost-periodic solutions. Preprint (1992). To appear in J. Differential Equations. Zbl0821.34043
- [10] L. Chierchia - E. Zehnder, Asymptotic expansions of quasiperiodic solutions. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), 16 (1989), 245-258. Zbl0695.34040MR1041897
- [11] L.H. Eliasson, Absolutely convergent series expansions for quasi periodic motions, Reports Department of Math., Univ. of Stockholm, Sweden, No. 2 (1988), 1-31. MR1399458
- [12] L.H. Eliasson, Hamiltonian systems with linear normal form near an invariant torus. In "Nonlinear Dynamics", G. Turchetti (Ed.) World Scientific, Singapore, 1989. Zbl0744.58019MR1115677
- [13] L.H. Eliasson, Generalization of an estimate of small divisors by Siegel. In "Analysis, et cetera", P.H. Rabinowitz and E. Zehnder (Eds.), Academic Press, 1990. Zbl0703.34010MR1039350
- [14] C. Falcolini - R. De La Llave, Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors, J. Statist. Phys.67 (1992). Zbl0892.58066MR1171147
- [15] G. Gallavotti, Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable hamiltonian systems. A review. Preprint (1993). Zbl0798.58036MR1305589
- [16] G. Gallavotti - G. Gentile, Non recursive proof of the KAM theorem. Preprint (1993).
- [17] I.P. Goulden - D.M. Jackson, Combinatorial Enumeration. Wyley Interscience Series in Discrete Math., 1983. Zbl0519.05001MR702512
- [18] F. Harary, Graph Theory. Addison-Wesley, 1969. Zbl0182.57702MR256911
- [19] A.N. Kolmogorov, On conservation of conditionally periodic motions under small perturbations of the Hamiltonian. Dokl. Akad. Nauk SSSR98, No. 4 (1954), 527-530 (Russian). Zbl0056.31502MR68687
- [20] J. Moser, On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1-20. Zbl0107.29301MR147741
- [21] J. Moser, Convergent series expansions for quasi-periodic motions. Math. Ann.169 (1967), 136-176. Zbl0149.29903MR208078
- [22] J. Moser, A rapidly convergent iteration method and nonlinear partial differential equations, I-II. Ann. Scuola Norm. Super. Pisa Cl. Sci. (3) 20 (1966), 265-315 and 499-535. Zbl0144.18202
- [23] H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Vols. 1-3. Gauthier-Villars, Paris1892/1893/1899.
- [24] H. Rüssmann, Kleine Nenner. I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1970 (1970), 67-105. Zbl0201.11202MR273156
- [25] W.M. Schmidt, Diophantine Approximation, Springer-Verlag (Lecture Notes in Math.785), Berlin-Heidelberg -New York, 1980. Zbl0421.10019MR568710
- [26] C.L. Siegel, Iterations of analytic functions, Ann. of Math.43 (1942), 607-612. Zbl0061.14904MR7044
- [27] M. Vittot, Lindstedt perturbation series in Hamiltonian mechanics: explicit formulation via a multidimensional Burmann-Lagrange formula, Preprint (1991).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.