Lindstedt series, ultraviolet divergences and Moser's theorem

Federico Bonetto; Giovanni Gallavotti; Guido Gentile; Vieri Mastropietro

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 3, page 545-593
  • ISSN: 0391-173X

How to cite

top

Bonetto, Federico, et al. "Lindstedt series, ultraviolet divergences and Moser's theorem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.3 (1998): 545-593. <http://eudml.org/doc/84338>.

@article{Bonetto1998,
author = {Bonetto, Federico, Gallavotti, Giovanni, Gentile, Guido, Mastropietro, Vieri},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Lindstedt series; Thirring model; invariant tori; quasi integrable even Hamiltonian; Lindstedt algorithm; Kolmogorov's invariant tori; non renormalizable quantum field theory},
language = {eng},
number = {3},
pages = {545-593},
publisher = {Scuola normale superiore},
title = {Lindstedt series, ultraviolet divergences and Moser's theorem},
url = {http://eudml.org/doc/84338},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Bonetto, Federico
AU - Gallavotti, Giovanni
AU - Gentile, Guido
AU - Mastropietro, Vieri
TI - Lindstedt series, ultraviolet divergences and Moser's theorem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 3
SP - 545
EP - 593
LA - eng
KW - Lindstedt series; Thirring model; invariant tori; quasi integrable even Hamiltonian; Lindstedt algorithm; Kolmogorov's invariant tori; non renormalizable quantum field theory
UR - http://eudml.org/doc/84338
ER -

References

top
  1. [BG] G. Benfatto - G. Gallavotti, "Renormalization Group", Princeton University Press, Princeton, 1995. Zbl0830.58038MR1380265
  2. [CF] L. Chierchia - C. Falcolini, A direct proof of a theorem by Kolmogorov in Hamiltonians systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 21 (1994), 541-593. Zbl0836.34040MR1318772
  3. [E] L.H. Eliasson, Absolutely convergent series expansions for quasi-periodic motions, Math. Phy. Electron. J.2 (1996). Zbl0896.34035MR1399458
  4. [G1] G. Gallavotti, Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, Rev. Mod. Phys.57 (1985), 471- 572. MR789582
  5. [G2] G. Gallavotti, Twistless KAM tori, Comm. Math. Phys.164 (1994), 145-156. Zbl0805.58054MR1288156
  6. [G3] G. Gallavotti, Invariant tori: a field theoretic point of view on Eliasson's work, In "Advances in Dynamical Systems and Quantum Physics", R. Figari (ed.), World Scientific, Singapore, 1995, pp. 117-132. MR1414693
  7. [GGM] G. Gallavotti - G. Gentile - V. Mastropietro, Field theory and KAM tori, Math. Phy. Electron. J. 1 (1995). Zbl0849.58038MR1359460
  8. [GG] G. Gallavotti - G. Gentile, Majorant series convergence for twistless KAM tori, Ergodic Theory Dynam. Systems15 (1995), 857-869. Zbl0871.58040MR1356618
  9. [GM1] G. Gentile - V. Mastropietro, KAM theorem revisited, Phys.D90 (1996), 225-234. Zbl0896.58030MR1372451
  10. [GM2] G. Gentile - V. Mastropietro, Tree expansion and multiscale analysis for KAM tori, Nonlinearity8, (1995), 1159-1178. Zbl0841.58037MR1363405
  11. [GM3] G. Gentile - V. Mastropietro, Methods for the analysis of the Lindstedt series for KAM tori and renormalizability in classical mechanics, A review with some applications, Rev. Math. Phys.8 (1996), 393-444. Zbl0870.70012MR1388257
  12. [H] M. Hermann, Difféomrphismes du cercles et rotations, Publ. Math. IHES49 (1979), 1-233. 
  13. [HP] F. Harary - E. Palmer, "Graphical enumeration", Academic Press, New York, 1973. Zbl0266.05108MR357214
  14. [K] A.N. Kolmogorov, On the preservation of conditionally periodic motions, Doklady Akademia Nauk SSSR96 (1954), 527-530; english translation in G. Casati, J. Ford: Stochastic behavior in classical and quantum Hamiltonians, Lectures Notes in Physics93, Springer, Berlin, 1979. Zbl0056.31502
  15. [M1] J. Moser, On invariant curves of an area preserving mapping of the annulus, Nac. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1- 20, (1962). Zbl0107.29301MR147741
  16. [M2] J. Moser, A rapidly convergent iteration method and nonlinear differential equations II, Ann. Scuola Norm. Sup. Pisa Cl. Sci (III) 20 (1966),499-535. MR206461
  17. [M3] J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann.169 (1967), 136-176. Zbl0149.29903MR208078
  18. [M4] J. Moser, On the construction of almost periodic solutions for ordinary differential equations, In "Proceedings of the International Conference of Functional Analysis and Related Topics", Tokyo (1969), pp. 60-67. Zbl0201.41701MR265692
  19. [M5] J. Moser, "Stable and Random Motions in Dynamical Systems, with special emphasis on Celestial Mechanics", Annals of Mathematical Studies77, Princeton University Press, Princeton, 1973. Zbl0271.70009MR442980
  20. [Pö] J. Pöschel, Invariant manifolds of complex analytic mappings, In "Critical Phenomena, Random Systems, Gauge Theories", Les Houches, Session XLIII (1984), Vol. II, K. Osterwalder R. Stora (eds.), North Holland, 1986, pp. 949-964. Zbl0681.58037MR880541
  21. [PV] I. Percival - F. Vivaldi, Critical dynamics and diagrams, Phys.33 (1988), 304-313. Zbl0662.58038MR984624
  22. [S] K. Siegel, Iterations of analytic functions, Ann. of Math.43 (1942), 607- 612. Zbl0061.14904MR7044
  23. [SW] E. Stein - G. Weiss, "Introduction to Fourier analysis on Euclidean spaces", Princeton University Press, Princeton, 1971. Zbl0232.42007MR304972

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.