Weighted Sobolev spaces in complex ellipsoids
Joaquín M. Ortega; Joan Fàbrega
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)
- Volume: 23, Issue: 2, page 325-362
- ISSN: 0391-173X
Access Full Article
topHow to cite
topOrtega, Joaquín M., and Fàbrega, Joan. "Weighted Sobolev spaces in complex ellipsoids." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.2 (1996): 325-362. <http://eudml.org/doc/84233>.
@article{Ortega1996,
author = {Ortega, Joaquín M., Fàbrega, Joan},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {division problem; -equation; weighted Sobolev spaces; complex ellipsoids; regularity; extension problems},
language = {eng},
number = {2},
pages = {325-362},
publisher = {Scuola normale superiore},
title = {Weighted Sobolev spaces in complex ellipsoids},
url = {http://eudml.org/doc/84233},
volume = {23},
year = {1996},
}
TY - JOUR
AU - Ortega, Joaquín M.
AU - Fàbrega, Joan
TI - Weighted Sobolev spaces in complex ellipsoids
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 2
SP - 325
EP - 362
LA - eng
KW - division problem; -equation; weighted Sobolev spaces; complex ellipsoids; regularity; extension problems
UR - http://eudml.org/doc/84233
ER -
References
top- [AD1] K. Adachi, Extending bounded holomorphic functions from certain subvarieties of a weakly pseudoconvex domain, Pacific J. Math.110 (1984), 9-19. Zbl0477.32013MR722733
- [AD 2] K. Adachi, Continuation of bounded holomorphic functions from certain subvarieties to weakly pseudoconvex domains, Pacific J. Math.130 (1987), 1-8. Zbl0589.32025MR910650
- [AD 3] K. Adachi, Extending HP functions from subvarieties to real ellipsoids, Trans. Amer. Math. Soc.317 (1990), 351-359. Zbl0687.32007MR946214
- [AM] E. Amar, Cohomologie complexe et applications, J. London Math. Soc.29 (1984),127-140. Zbl0583.32033MR734998
- [BEA] F. Beatrous, Estimates for Derivatives of Holomorphic Functions in Pseudoconvex Domains, Math. Z.191 (1986), 91-116. Zbl0596.32005MR812605
- [BER-AN] B. Berndtsson - M. Andersson, Henkin-Ramirez Formulas with Weight Factors, Ann. Inst. Fourier (Grenoble) 32 (1983), 91-110. Zbl0466.32001MR688022
- [BER] B. Berndtsson, A formula for Interpolation and Division in Cn, Math. Ann.263 (1983), 399-412. Zbl0499.32013MR707239
- [B-CHA] A. Bonomi - PH. Crarpentier, Solutions de l'equation ∂ et zeros de la classe de Nevalinna dans certains domaines faiblement pseudo-convexes, Ann. Inst. Fourier (Grenoble) 32 (1982), 53-89. Zbl0493.32005
- [BO-CU-ZE] P. Bonneau - A. Cumenge - A. Zériahi, Division dans les espaces de Lipschitz de fonction's holomorphes, C.R. Acad. Sci. Paris297 (1983), 517-520. Zbl0576.32025MR735489
- [BO-DI] P. Bonneau - K. Diederich, Integral solution operators for the Cauchy-Riemann equations on pseudoconvex domains, Math. Ann.286 (1990), 77-100. Zbl0698.47020MR1032924
- [BR-CA] J. Bruna - J. Castillo, Hölder and L P -estimatesfor the ∂-equation in some convex domains with real analytic boundary, Mat. Ann.269 (1984), 527-539. Zbl0533.32010
- [BR-OR] J. Bruna - J.M. Ortega, Interpolation by Holomorphic Functions Smooth to the Boundary in the Unit Ball of Cn, Math. Ann.274 (1986), 527-575. Zbl0585.32018MR848501
- [CH-NA-ST] D.C. Chang - A. Nagel - E.M. Stein, Estimates for the ∂-Neumann problem in pseudoconvex domains of finite type in C2, Acta Math.169 (1992), 153-228. Zbl0821.32011
- [CHE-KR-MA] Z. Chen - S.G. Krantz - D. Ma, Optimal Lp estimates for the ∂-equation in C2, Manuscripta Math.80 (1993), 131-150. Zbl0789.32011
- [CU] A. Cumenge, Extension dans les classes de Hardy de fonctions holomorphes et estimations de type "Mesures de Carleson " pour l'equations ∂, Ann. Inst. Fourier (Grenoble) 33 (1983), 59-97. Zbl0487.32011
- [DI-FO] K. Diederich - J.E. Fornaess - J. Wiegerinck, Sharp Hölder estimates for ∂ on ellipsoids, Manuscripta Math.56 (1986), 399-417. Zbl0602.32006
- [GR-ST] P.C. Greiner - E.M. Stein, Estimates for the ∂-Neumann problem, Princeton University Press, 1977. Zbl0354.35002
- [GRE] S. Grellier, Behavior of holomorphic functions in complex tangential directions in a domain offinite type in Cn, Publ. Mat.36 (1992), 251-292. Zbl0758.32004MR1179617
- [HE] G.M. Henkin, Continuation of bounded holomorphicfunctionsfrom submanifolds in general position to strictly pseudoconvex domains, Math. USSR-Izv.6 (1972), 536-563. Zbl0255.32008
- [HI] M. Hickel, Sur un probleme de division dans l'algebre A∞ (D) d'un ouvert faiblemment pseudoconvexe de (C2, Math. Z.197 (1988), 201-218. Zbl0617.32024
- [KE] N. Kerzman, Hölder and Lp estimates for solutions of ∂u = f in strongly pseudoconvex domains, Comm. Pure Appl. Math.24 (1971), 301-379. Zbl0205.38702
- [KO] J.J. Kohn, Boundary behavior of ∂ on weakly pseudoconvex manifolds of dimension two, J. Differential Geometry6 (1972), 523-542. Zbl0256.35060
- [KO] S.G. Krantz, Optimal Lipschitz and LP regularity for the equation ∂u = f on strongly pseudoconvex domains, Math. Ann.219 (1976), 233-260. Zbl0303.35059
- [NA-ST-WA] A. Nagel - E.M. Stein - S. Wainger, Boundary behavior of functions holomorphic in domains offinite type, Proc. Nat. Acad. Sci. U.S.A.78 (1980), 6596-6599. Zbl0517.32002MR634936
- [OK] G.O. Okikiolu, Aspects of the Theory of Bounded integral operators in Lpspaces, Academic Press. London - New York, 1971. Zbl0219.44002MR445237
- [OR-FA 1] J.M. Ortega - J. Fàbrega, Division and Extension in weighted Bergman-Sobolev spaces, Publ. Mat.36 (1992), 837-859. Zbl0777.32004MR1210023
- [OR-FA 2] J.M. Ortega - J. Fàbrega, Mixed-norm spaces and interpolation, Studia Math.109 (1994), 233-254. Zbl0826.32003MR1274011
- [OV] N. Ovrelid, Integral representations formulas and L p estimates for the ∂ equation, Math. Scand.29 (1971), 137-160. Zbl0227.35069
- [RA] R.M. Range, On Hölder estimates for ∂u = f on weakly pseudoconvex domains, Proceedings of International Conferences. Cortona, Italy 1976- 1977. Scuola Norm. Sup. Pisa (1978), 247-267. Zbl0421.32021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.