Boundary optimization under pseudo curvature constraint

Dorin Bucur; Jean-Paul Zolésio

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)

  • Volume: 23, Issue: 4, page 681-699
  • ISSN: 0391-173X

How to cite

top

Bucur, Dorin, and Zolésio, Jean-Paul. "Boundary optimization under pseudo curvature constraint." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.4 (1996): 681-699. <http://eudml.org/doc/84245>.

@article{Bucur1996,
author = {Bucur, Dorin, Zolésio, Jean-Paul},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {shape optimization; perimeter; Minkowski content},
language = {eng},
number = {4},
pages = {681-699},
publisher = {Scuola normale superiore},
title = {Boundary optimization under pseudo curvature constraint},
url = {http://eudml.org/doc/84245},
volume = {23},
year = {1996},
}

TY - JOUR
AU - Bucur, Dorin
AU - Zolésio, Jean-Paul
TI - Boundary optimization under pseudo curvature constraint
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 4
SP - 681
EP - 699
LA - eng
KW - shape optimization; perimeter; Minkowski content
UR - http://eudml.org/doc/84245
ER -

References

top
  1. [1] L. Ambrosio - G. Buttazzo, An optimal design problem with perimeter penalization, Calc. Var.1 (1993), 55-69. Zbl0794.49040MR1261717
  2. [2] M. Berger, Géométrie, vol. 3, Cedic/Fernand Nathan, Paris, 1978. Zbl0423.51003MR536872
  3. [3] M. Berger - B. Gostiaux, Géométrie Différentielle, Armand Collin, Paris, 1987. MR494180
  4. [4] D. Bucur - J.P. Zolésio, Continuité par rapport au domaine dans le problème de Neumann, C.R. Acad. Sci. Paris Sér. I Math.319 (1994), 57-60. Zbl0805.35010MR1285898
  5. [5] D. Bucur - J.P. Zolésio, Free Boundary Problems and Density Perimeter, J. Differential Equations126 (1996), 224-243. Zbl0856.35137MR1383977
  6. [6] M. Delfour - J.P. Zolésio, Shape Optimization: Oriented Distance Function, Comett. Cours, Sophia Antipolis, 1993. 
  7. [7] H. Federer, Geometric Measure Theory, Springer Verlag, Berlin, 1969. Zbl0176.00801MR257325
  8. [8] S.L. Kulkarni - S. Mitter - T. Richardson, An Existence Theorem and Lattice Approximations for a Variational Problem Arising in Computer Vision, Signal Processing, Part I Signal Processing Theory, L. Auslander, T. Kailath and S. Mitter eds., IMA series, Springer-Verlag, 1990, p. 189-210. Zbl0701.49003MR1044605
  9. [9] J. Sokolowski - J.P. Zolésio, Introduction to Shape Optimization, Springer Verlag, 1992. Zbl0761.73003MR1215733
  10. [10] W. Ziemer, Weakly Differentiable Functions, Springer, 1989. Zbl0692.46022MR1014685
  11. [11] J.P. Zolésio, Weak Shape Formulation of Free Boundary Problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci.21 (1994), 11-44. Zbl0807.49018MR1276761

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.