The complex Monge-Ampère operator in hyperconvex domains

Zbigniew Błocki

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)

  • Volume: 23, Issue: 4, page 721-747
  • ISSN: 0391-173X

How to cite

top

Błocki, Zbigniew. "The complex Monge-Ampère operator in hyperconvex domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.4 (1996): 721-747. <http://eudml.org/doc/84247>.

@article{Błocki1996,
author = {Błocki, Zbigniew},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {plurisubharmonic function; hyperconvex domain},
language = {eng},
number = {4},
pages = {721-747},
publisher = {Scuola normale superiore},
title = {The complex Monge-Ampère operator in hyperconvex domains},
url = {http://eudml.org/doc/84247},
volume = {23},
year = {1996},
}

TY - JOUR
AU - Błocki, Zbigniew
TI - The complex Monge-Ampère operator in hyperconvex domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 4
SP - 721
EP - 747
LA - eng
KW - plurisubharmonic function; hyperconvex domain
UR - http://eudml.org/doc/84247
ER -

References

top
  1. [Bed] E. Bedford, Survey of pluri-potential theory, Several Complex Variables, Proceedings of the Mittag-Leffler Institute, 1987-1988, J.E. Fornæss (ed.), Princeton Univ. Press, 1993. Zbl0786.31001MR1207855
  2. [BT1] E. Bedford - B.A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math.37 (1976), 1-44. Zbl0315.31007MR445006
  3. [BT2] E. Bedford - B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math.149 (1982), 1-41. Zbl0547.32012MR674165
  4. [Bło1] Z. Blocki, Estimates for the complex Monge-Ampère operator, Bull. Polish Acad. Sci. Math.41 (1993), 151-157. Zbl0795.32003
  5. [Bło2] Z. Błocki, On the Lp-stability for the complex Monge-Ampère operator, Michigan Math. J.42(1995), 269-275. Zbl0841.35017
  6. [Bło3] Z. Błocki, Smooth exhaustion function in convex domains, to appear in Proc. Amer. Math. Soc. Zbl0889.35030
  7. [Ceg] U. Cegrell, Capacities in complex analysis, Aspect of Math. E14, Vieweg, 1988. Zbl0655.32001MR964469
  8. [CP] U. Cegrell - L. Persson, The Dirichlet problem for the complex Monge-Ampère operator: Stability in L2, Michigan Math. J.39 (1992), 145-151. Zbl0799.32013MR1137895
  9. [CLN] S.S. Chern - H. Levine - L. Nirenberg, Intrinsic norms on a complex manifold, Global Analysis, Univ. of Tokyo Press, 1969, 119-139. Zbl0202.11603MR254877
  10. [Dem1] J.-P. Demailly, Mesures de Monge-Ampère et mesures plurisousharmoniques, Math. Z.194 (1987), 519-564. Zbl0595.32006MR881709
  11. [Dem2] J.-P. Demailly, Potential theory in several complex variables, preprint, 1989. 
  12. [Doo] J.L. Doob, Classical potential theory and its probabilistic counterpart, Grundl. der Math. Wiss.262, Springer-Verlag, 1984. Zbl0549.31001MR731258
  13. [Gav] B. Gaveau, Méthodes de contrôle optimal en analyse complexe I. Résolution d'équations de Monge-Ampère, J. Funct. Anal. 25 (1977), 391-411. Zbl0356.35071MR457783
  14. [GT] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order, Grundl. der Math. Wiss. 244, Springer Verlag, 1983. Zbl0562.35001MR737190
  15. [Hör] L. Hörmander, An introduction to complex analysis in several variables, North-Holland, 1990. Zbl0685.32001MR1045639
  16. [KR] N. Kerzman - J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann.257 (1981), 171-184. Zbl0451.32012MR634460
  17. [Kli] M. Klimek, Pluripotential theory, Clarendon Press, 1991. Zbl0742.31001MR1150978
  18. [Koł] S. Kołodziej, Some sufficient condition for solvability of the Dirichlet problem for the complex Monge-Ampère operator, Ann. Polon. Math.65 (1996), 11-21. Zbl0878.32014
  19. [LO] N. Levenberg - M. Okada, On the Dirichlet problem for the complex Monge-Ampère operator, Michigan Math. J.40 (1993), 507-526. Zbl0805.31004MR1236176
  20. [RT] J. Rauch - B.A. Taylor, The Dirichlet problem for the multidimensional Monge Ampère equation, Rocky Mountain Math. J.7 (1977), 345-364. Zbl0367.35025MR454331
  21. [Rich] R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann.175 (1968), 257-286. Zbl0153.15401MR222334
  22. [Rud] W. Rudin, Function theory in the unit ball of Cn, Grundl. der Math. Wiss. 241, Springer-Verlag, 1980. Zbl0495.32001MR601594
  23. [Sib] N. Sibony, Une classe de domaines pseudoconvexes, Duke Math. J.55 (1987), 299-319. Zbl0622.32016MR894582
  24. [Wal] J.B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech.18 (1968), 143-148. Zbl0159.16002MR227465

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.