Displaying similar documents to “The complex Monge-Ampère operator in hyperconvex domains”

The Dirichlet problem for the degenerate Monge-Ampère equation.

Luis A. Caffarelli, Louis Nirenberg, Joel Spruck (1986)

Revista Matemática Iberoamericana

Similarity:

Let Ω be a bounded convex domain in Rn with smooth, strictly convex boundary ∂Ω, i.e. the principal curvatures of ∂Ω are all positive. We study the problem of finding a convex function u in Ω such that: det (uij) = 0 in Ω u = φ given on ∂Ω.

The general definition of the complex Monge-Ampère operator

Urban Cegrell (2004)

Annales de l’institut Fourier

Similarity:

We define and study the domain of definition for the complex Monge-Ampère operator. This domain is the most general if we require the operator to be continuous under decreasing limits. The domain is given in terms of approximation by certain " test"-plurisubharmonic functions. We prove estimates, study of decomposition theorem for positive measures and solve a Dirichlet problem.

Weak solutions to the complex Hessian equation

Zbigniew Blocki (2005)

Annales de l’institut Fourier

Similarity:

We investigate the class of functions associated with the complex Hessian equation ( d d c u ) m ω n - m = 0 .

Matrix inequalities and the complex Monge-Ampère operator

Jonas Wiklund (2004)

Annales Polonici Mathematici

Similarity:

We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge-Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge-Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.