m -harmonic flow

Norbert Hungerbühler

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 4, page 593-631
  • ISSN: 0391-173X

How to cite

top

Hungerbühler, Norbert. "$m$-harmonic flow." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.4 (1997): 593-631. <http://eudml.org/doc/84272>.

@article{Hungerbühler1997,
author = {Hungerbühler, Norbert},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {energy estimate; energy concentration; -harmonic flow; -energy},
language = {eng},
number = {4},
pages = {593-631},
publisher = {Scuola normale superiore},
title = {$m$-harmonic flow},
url = {http://eudml.org/doc/84272},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Hungerbühler, Norbert
TI - $m$-harmonic flow
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 4
SP - 593
EP - 631
LA - eng
KW - energy estimate; energy concentration; -harmonic flow; -energy
UR - http://eudml.org/doc/84272
ER -

References

top
  1. [1] F. Bethuel, The approximation problem for Sobolev maps between manifolds, Acta Math.167 (1991),153-206. Zbl0756.46017MR1120602
  2. [2] F. Bethuel - X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal.80 (1988), 60-75. Zbl0657.46027MR960223
  3. [3] K.-C. Chang - W.-Y. Ding - R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom.36 (1992), 507-515. Zbl0765.53026MR1180392
  4. [4] Y. Chen, The weak solutions to the evolution problem of harmonic maps, Math. Z.201 (1989), 69-74. Zbl0685.58015MR990189
  5. [5] Y. Chen - M.-C. Hong - N. Hungerbühler, Heat flow of p-harmonic maps with values into spheres, Math. Zeit.215 (1994), 25-35. Zbl0793.53049MR1254812
  6. [6] Y. Chen - M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z.201 (1989), 83-103. Zbl0652.58024MR990191
  7. [7] H.J. Choe, Hölder continuity for solutions of certain degenerate parabolic systems, Nonlinear Anal. 18 (1992), 235-243. Zbl0778.35017MR1148287
  8. [8] H.J. Choe, Hölder regularity for the gradient of solutions of certain singular parabolic equations, Comm. Partial Differential Equations16 (1991), 1709-1732. Zbl0778.35016MR1135917
  9. [9] J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré, Anal. Non Linéaire7 (1990), 335-344. Zbl0707.58017MR1067779
  10. [10] J.-M. Coron - R. Gulliver, Minimizing p-harmonic maps into spheres, J. Reine Angew. Math.401 (1989), 82-100. Zbl0677.58021MR1018054
  11. [ 11 ] E. Dibenedetto, C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7 (1983), 827-850. Zbl0539.35027
  12. [12] E. Dibenedetto, Degenerate parabolic equations, Universitext, Springer, Berlin, 1993. Zbl0794.35090MR1230384
  13. [13] E. Dibenedetto - A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math.349 (1984), 83-128. Zbl0527.35038MR743967
  14. [14] E. Dibenedetto - A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math.357 (1984), 1-22. Zbl0549.35061MR783531
  15. [15] F. Duzaar - M. Fuchs, Existence and regularity of functions which minimize certain energies in homotopy classes of mappings, Asymptotic Anal. 5 (1991), 129-144. Zbl0771.49016MR1136359
  16. [16] J. Eells - L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. Zbl0669.58009MR956352
  17. [17] J. Eells - J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964), 109-169. Zbl0122.40102MR164306
  18. [18] J. L. ERICKSEN - D. KINDERLEHRER (ed.), Theory and applications of liquid crystals, IMA Vol. Math. Appl., vol. 5., Springer, New York, 1987. Zbl0713.76006MR900827
  19. [19] L.C. Evans, A new proof of local C 1, α regularity for solutions of certain degenerate elliptic P.D.E., J. Differential Equations45 (1982), 356-373. Zbl0508.35036
  20. [20] A. Freire, Uniqueness for the harmonic map flow in two dimensions, Calc. Var. Partial Differential Equations3 (1995), 95-105. Zbl0814.35057MR1384838
  21. [21 ] A. Freire, Uniqueness for the harmonic map flow from surfaces to general targets, Comment. Math. Helv.70 (1995), no. 2, 310-338. Zbl0831.58018MR1324632
  22. [22] A. Freire, Correction to: "Uniqueness for the harmonic map flow from surfaces to general targets" , Comment. Math. Helv.71 (1996), no. 2, 330-337. Zbl0851.58011MR1396678
  23. [23] A. Freire - S. Müller - M. Struwe, Weak convergence of wave maps from (1 + 2)-dimensional Minkowski space to Riemannian manifolds, Invent. Math., to appear. Zbl0906.35061MR1483995
  24. [24] M. Fuchs, p-harmonische Hindernisprobleme, Habilitationsschrift Düsseldorf, Düsseldorf, 1987. 
  25. [25] M. Fuchs, Everywhere regularity theorems for mappings which minimize p-energy, Comment. Math. Univ. Carolin. 28 (1987), 673-677. MR928682
  26. [26] M. Fuchs, Some regularity theorems for mappings which are stationary points of the p-energy functional, Analysis9 (1989), 127-143. Zbl0683.49014MR998172
  27. [27] M. Fuchs, p-harmonic obstacle problems, Part I: Partial regularity theory Ann. Mat. Pura Appl.156 (1990), 127-158. Zbl0715.49003MR1080213
  28. [28] M. Fuchs, p-harmonic obstacle problems, Part II: Extensions of Maps and Applications Manuscripta Math. 63 (1989), 381-419. Zbl0715.49004MR991263
  29. [29] M. Fuchs, p-harmonic obstacle problems, Part III: Boundary regularity. Ann. Mat. Pura Appl.156 (1990), 159-180. Zbl0715.49005MR1080214
  30. [30] M. Fuchs, p-harmonic obstacle problems, Part IV: Unbounded side conditionsAnalysis13 (1993), 69-76159-180. Zbl0793.49017MR1245743
  31. [31] M. Fuchs - J. Hutchinson, Partial regularity for minimizers of certain functionals having non quadratic growth, Preprint, CMA, Canberra, 1985. 
  32. [32] M. Giaquinta - G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math. 57 (1986), 55-99. Zbl0607.49003MR866406
  33. [33] E. Giusti - M. Miranda, Un esempio di solutioni discontinue per un problema di minima relativo ad un integrale regolare del calcolo delle variazioni, Boll. Un. Mat. Ital. 2 (1968), 1-8. Zbl0155.44501MR232265
  34. [34] M. Günther, Zum Einbettungssatz von J. Nash, Math. Nachr.,144 (1989), 165-187. Zbl0699.53062MR1037168
  35. [35] R.S. Hamilton, Harmonic maps of manifolds with boundary, Lect. Notes Math.471, Springer, Berlin, 1975. Zbl0308.35003MR482822
  36. [36] R. Hardt - F.H. Lin, A remark on H1-mappings, Manuscripta Math.56 (1986), 1-10. Zbl0618.58015MR846982
  37. [37] R. Hardt - F.H. Lin, Mappings minimizing the LP norm of the gradient, Comm. Pure and Appl. Math. 15 (1987), 555-588. Zbl0646.49007MR896767
  38. [38] F. Hélein, Regularité des applications faiblement harmoniques entre une surface et une variteé Riemannienne, C.R. Acad. Sci. Paris Ser. I Math.312 (1991), 591-596. Zbl0728.35015MR1101039
  39. [39] N. Hungerbühler, Non-uniqueness for the p-harmonic flow, Canad. Math. Bull.40 (1997), 174-182. Zbl0879.35071MR1451271
  40. [40] N. Hungerbühler, Global weak solutions of the p-harmonic flow into homogeneous spaces, Indiana Univ. Math. J. 45/1, (1996), 275-288. Zbl0857.35053MR1406694
  41. [41] N. Hungerbühler, Compactness properties of the p-harmonic flow into homogeneous spaces, Nonlinear Anal. 28/5 (1997), 793-798. Zbl0871.58027MR1422184
  42. [42] J.B. Keller - J. Rubinstein - P. Sternberg, Reaction-diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math.49 (1989), 1722-1733. Zbl0702.35128MR1025956
  43. [43] S. Klainerman - M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math.46, No. 9 (1993), 1221-1268. Zbl0803.35095MR1231427
  44. [44] O.A. Lady - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, AMS, Providence R.I.1968. MR241822
  45. [45] L. Lemaire, Applications harmoniques de surfaces riemannienne, J. Differential Geom.13 (1978),51-78. Zbl0388.58003MR520601
  46. [46] J. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32849-858. Zbl0554.35048MR721568
  47. [47] S. Luckhaus, Partial Holder continuity of energy minimizing p-harmonic maps between Riemannian manifolds, preprint, CMA, Canberra, 1986. 
  48. [48] A. Lunardi, On the local dynamical system associated to a fully nonlinear abstract parabolic equation, Nonlinear Analysis and Applications (ed. V. Laksmikantham, M. Decker), (1987), 319-326. Zbl0646.47045MR912310
  49. [49] C.B. Morrey, Multiple integrals in the calculus of variations, Grundlehren130, Springer, Berlin, 1966. Zbl0142.38701
  50. [50] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964), 101-134. Zbl0149.06902MR159139
  51. [51 ] J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math.24 (1971), 727-740. Zbl0227.35016MR288405
  52. [52] S. Müller - M. Struwe, Global existence of wave maps in 1 + 2 dimensions for finite energy data, Top. Methods Nonlinear Analysis, to appear. Zbl0896.35086MR1481698
  53. [53] J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math.63 (1956), 20-63. Zbl0070.38603MR75639
  54. [54] J. Sacks - K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math.113 (1981), 1-24. Zbl0462.58014MR604040
  55. [55] R.S. Schoen - K. Uhlenbeck, Approximation theorems for sobolev mappings, preprint. 
  56. [56] J. Shatah, Weak solutions and development of singularities in the SU(2) σ -model,, Comm. Pure Appl. Math.41 (1988), 459-469. Zbl0686.35081
  57. [57] M. Struwe, Weak compactness of harmonic maps from (2 + 1) -dimensional Minkowsky space to symmetric spaces, preprint, 1994. 
  58. [58] M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Math. Helv.60 (1985), 558-581. Zbl0595.58013MR826871
  59. [59] M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Diff. Geom.28 (1988), 485-502. Zbl0631.58004MR965226
  60. [60] P. Tolksdorf, Everywhere regularity for some quasilinear systems with a lack of ellipticity, Ann. Math. Pura Appl. 134 (1983), 241-266. Zbl0538.35034MR736742
  61. [61 ] P. Tolksdorf, Regularity for a more general class ofquasilinear equations, J. of Differential Equations51 (1984), 126-150. Zbl0488.35017MR727034
  62. [62] T. Toro - C. Wang, Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J.44 (1995), 87-113. Zbl0826.58014MR1336433
  63. [63] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219-240. Zbl0372.35030MR474389
  64. [64] N.N. Ural'ceva, Degenerate quasilinear elliptic systems, Zap. Naucn. Sem. Leningrad. Otel. Mat. Inst. Steklov7 (1968), 184-222. MR244628
  65. [65] V. Vespri, Local existence, uniqueness and regularity for a class of degenerate parabolic systems arising in biological models, Quaderno/Dipartimento di Matematica "F.Enriques"', Universita degli Studi di Milano, no. 33/1988. Zbl0755.35059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.