-harmonic flow
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 24, Issue: 4, page 593-631
- ISSN: 0391-173X
Access Full Article
topHow to cite
topHungerbühler, Norbert. "$m$-harmonic flow." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.4 (1997): 593-631. <http://eudml.org/doc/84272>.
@article{Hungerbühler1997,
author = {Hungerbühler, Norbert},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {energy estimate; energy concentration; -harmonic flow; -energy},
language = {eng},
number = {4},
pages = {593-631},
publisher = {Scuola normale superiore},
title = {$m$-harmonic flow},
url = {http://eudml.org/doc/84272},
volume = {24},
year = {1997},
}
TY - JOUR
AU - Hungerbühler, Norbert
TI - $m$-harmonic flow
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 4
SP - 593
EP - 631
LA - eng
KW - energy estimate; energy concentration; -harmonic flow; -energy
UR - http://eudml.org/doc/84272
ER -
References
top- [1] F. Bethuel, The approximation problem for Sobolev maps between manifolds, Acta Math.167 (1991),153-206. Zbl0756.46017MR1120602
- [2] F. Bethuel - X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal.80 (1988), 60-75. Zbl0657.46027MR960223
- [3] K.-C. Chang - W.-Y. Ding - R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom.36 (1992), 507-515. Zbl0765.53026MR1180392
- [4] Y. Chen, The weak solutions to the evolution problem of harmonic maps, Math. Z.201 (1989), 69-74. Zbl0685.58015MR990189
- [5] Y. Chen - M.-C. Hong - N. Hungerbühler, Heat flow of p-harmonic maps with values into spheres, Math. Zeit.215 (1994), 25-35. Zbl0793.53049MR1254812
- [6] Y. Chen - M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z.201 (1989), 83-103. Zbl0652.58024MR990191
- [7] H.J. Choe, Hölder continuity for solutions of certain degenerate parabolic systems, Nonlinear Anal. 18 (1992), 235-243. Zbl0778.35017MR1148287
- [8] H.J. Choe, Hölder regularity for the gradient of solutions of certain singular parabolic equations, Comm. Partial Differential Equations16 (1991), 1709-1732. Zbl0778.35016MR1135917
- [9] J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré, Anal. Non Linéaire7 (1990), 335-344. Zbl0707.58017MR1067779
- [10] J.-M. Coron - R. Gulliver, Minimizing p-harmonic maps into spheres, J. Reine Angew. Math.401 (1989), 82-100. Zbl0677.58021MR1018054
- [ 11 ] E. Dibenedetto, C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7 (1983), 827-850. Zbl0539.35027
- [12] E. Dibenedetto, Degenerate parabolic equations, Universitext, Springer, Berlin, 1993. Zbl0794.35090MR1230384
- [13] E. Dibenedetto - A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math.349 (1984), 83-128. Zbl0527.35038MR743967
- [14] E. Dibenedetto - A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math.357 (1984), 1-22. Zbl0549.35061MR783531
- [15] F. Duzaar - M. Fuchs, Existence and regularity of functions which minimize certain energies in homotopy classes of mappings, Asymptotic Anal. 5 (1991), 129-144. Zbl0771.49016MR1136359
- [16] J. Eells - L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. Zbl0669.58009MR956352
- [17] J. Eells - J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964), 109-169. Zbl0122.40102MR164306
- [18] J. L. ERICKSEN - D. KINDERLEHRER (ed.), Theory and applications of liquid crystals, IMA Vol. Math. Appl., vol. 5., Springer, New York, 1987. Zbl0713.76006MR900827
- [19] L.C. Evans, A new proof of local C 1, α regularity for solutions of certain degenerate elliptic P.D.E., J. Differential Equations45 (1982), 356-373. Zbl0508.35036
- [20] A. Freire, Uniqueness for the harmonic map flow in two dimensions, Calc. Var. Partial Differential Equations3 (1995), 95-105. Zbl0814.35057MR1384838
- [21 ] A. Freire, Uniqueness for the harmonic map flow from surfaces to general targets, Comment. Math. Helv.70 (1995), no. 2, 310-338. Zbl0831.58018MR1324632
- [22] A. Freire, Correction to: "Uniqueness for the harmonic map flow from surfaces to general targets" , Comment. Math. Helv.71 (1996), no. 2, 330-337. Zbl0851.58011MR1396678
- [23] A. Freire - S. Müller - M. Struwe, Weak convergence of wave maps from (1 + 2)-dimensional Minkowski space to Riemannian manifolds, Invent. Math., to appear. Zbl0906.35061MR1483995
- [24] M. Fuchs, p-harmonische Hindernisprobleme, Habilitationsschrift Düsseldorf, Düsseldorf, 1987.
- [25] M. Fuchs, Everywhere regularity theorems for mappings which minimize p-energy, Comment. Math. Univ. Carolin. 28 (1987), 673-677. MR928682
- [26] M. Fuchs, Some regularity theorems for mappings which are stationary points of the p-energy functional, Analysis9 (1989), 127-143. Zbl0683.49014MR998172
- [27] M. Fuchs, p-harmonic obstacle problems, Part I: Partial regularity theory Ann. Mat. Pura Appl.156 (1990), 127-158. Zbl0715.49003MR1080213
- [28] M. Fuchs, p-harmonic obstacle problems, Part II: Extensions of Maps and Applications Manuscripta Math. 63 (1989), 381-419. Zbl0715.49004MR991263
- [29] M. Fuchs, p-harmonic obstacle problems, Part III: Boundary regularity. Ann. Mat. Pura Appl.156 (1990), 159-180. Zbl0715.49005MR1080214
- [30] M. Fuchs, p-harmonic obstacle problems, Part IV: Unbounded side conditionsAnalysis13 (1993), 69-76159-180. Zbl0793.49017MR1245743
- [31] M. Fuchs - J. Hutchinson, Partial regularity for minimizers of certain functionals having non quadratic growth, Preprint, CMA, Canberra, 1985.
- [32] M. Giaquinta - G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math. 57 (1986), 55-99. Zbl0607.49003MR866406
- [33] E. Giusti - M. Miranda, Un esempio di solutioni discontinue per un problema di minima relativo ad un integrale regolare del calcolo delle variazioni, Boll. Un. Mat. Ital. 2 (1968), 1-8. Zbl0155.44501MR232265
- [34] M. Günther, Zum Einbettungssatz von J. Nash, Math. Nachr.,144 (1989), 165-187. Zbl0699.53062MR1037168
- [35] R.S. Hamilton, Harmonic maps of manifolds with boundary, Lect. Notes Math.471, Springer, Berlin, 1975. Zbl0308.35003MR482822
- [36] R. Hardt - F.H. Lin, A remark on H1-mappings, Manuscripta Math.56 (1986), 1-10. Zbl0618.58015MR846982
- [37] R. Hardt - F.H. Lin, Mappings minimizing the LP norm of the gradient, Comm. Pure and Appl. Math. 15 (1987), 555-588. Zbl0646.49007MR896767
- [38] F. Hélein, Regularité des applications faiblement harmoniques entre une surface et une variteé Riemannienne, C.R. Acad. Sci. Paris Ser. I Math.312 (1991), 591-596. Zbl0728.35015MR1101039
- [39] N. Hungerbühler, Non-uniqueness for the p-harmonic flow, Canad. Math. Bull.40 (1997), 174-182. Zbl0879.35071MR1451271
- [40] N. Hungerbühler, Global weak solutions of the p-harmonic flow into homogeneous spaces, Indiana Univ. Math. J. 45/1, (1996), 275-288. Zbl0857.35053MR1406694
- [41] N. Hungerbühler, Compactness properties of the p-harmonic flow into homogeneous spaces, Nonlinear Anal. 28/5 (1997), 793-798. Zbl0871.58027MR1422184
- [42] J.B. Keller - J. Rubinstein - P. Sternberg, Reaction-diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math.49 (1989), 1722-1733. Zbl0702.35128MR1025956
- [43] S. Klainerman - M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math.46, No. 9 (1993), 1221-1268. Zbl0803.35095MR1231427
- [44] O.A. Lady - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, AMS, Providence R.I.1968. MR241822
- [45] L. Lemaire, Applications harmoniques de surfaces riemannienne, J. Differential Geom.13 (1978),51-78. Zbl0388.58003MR520601
- [46] J. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32849-858. Zbl0554.35048MR721568
- [47] S. Luckhaus, Partial Holder continuity of energy minimizing p-harmonic maps between Riemannian manifolds, preprint, CMA, Canberra, 1986.
- [48] A. Lunardi, On the local dynamical system associated to a fully nonlinear abstract parabolic equation, Nonlinear Analysis and Applications (ed. V. Laksmikantham, M. Decker), (1987), 319-326. Zbl0646.47045MR912310
- [49] C.B. Morrey, Multiple integrals in the calculus of variations, Grundlehren130, Springer, Berlin, 1966. Zbl0142.38701
- [50] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964), 101-134. Zbl0149.06902MR159139
- [51 ] J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math.24 (1971), 727-740. Zbl0227.35016MR288405
- [52] S. Müller - M. Struwe, Global existence of wave maps in 1 + 2 dimensions for finite energy data, Top. Methods Nonlinear Analysis, to appear. Zbl0896.35086MR1481698
- [53] J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math.63 (1956), 20-63. Zbl0070.38603MR75639
- [54] J. Sacks - K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math.113 (1981), 1-24. Zbl0462.58014MR604040
- [55] R.S. Schoen - K. Uhlenbeck, Approximation theorems for sobolev mappings, preprint.
- [56] J. Shatah, Weak solutions and development of singularities in the SU(2) σ -model,, Comm. Pure Appl. Math.41 (1988), 459-469. Zbl0686.35081
- [57] M. Struwe, Weak compactness of harmonic maps from (2 + 1) -dimensional Minkowsky space to symmetric spaces, preprint, 1994.
- [58] M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Math. Helv.60 (1985), 558-581. Zbl0595.58013MR826871
- [59] M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Diff. Geom.28 (1988), 485-502. Zbl0631.58004MR965226
- [60] P. Tolksdorf, Everywhere regularity for some quasilinear systems with a lack of ellipticity, Ann. Math. Pura Appl. 134 (1983), 241-266. Zbl0538.35034MR736742
- [61 ] P. Tolksdorf, Regularity for a more general class ofquasilinear equations, J. of Differential Equations51 (1984), 126-150. Zbl0488.35017MR727034
- [62] T. Toro - C. Wang, Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J.44 (1995), 87-113. Zbl0826.58014MR1336433
- [63] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219-240. Zbl0372.35030MR474389
- [64] N.N. Ural'ceva, Degenerate quasilinear elliptic systems, Zap. Naucn. Sem. Leningrad. Otel. Mat. Inst. Steklov7 (1968), 184-222. MR244628
- [65] V. Vespri, Local existence, uniqueness and regularity for a class of degenerate parabolic systems arising in biological models, Quaderno/Dipartimento di Matematica "F.Enriques"', Universita degli Studi di Milano, no. 33/1988. Zbl0755.35059
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.