Spectral mapping theorem for fractional powers in locally convex spaces

Celso Martínez; Miguel Sanz

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 4, page 685-702
  • ISSN: 0391-173X

How to cite

top

Martínez, Celso, and Sanz, Miguel. "Spectral mapping theorem for fractional powers in locally convex spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.4 (1997): 685-702. <http://eudml.org/doc/84274>.

@article{Martínez1997,
author = {Martínez, Celso, Sanz, Miguel},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {fractional powers of nonnegative operators; sequentially complete, locally convex spaces; spectral mapping theorem; functional calculus},
language = {eng},
number = {4},
pages = {685-702},
publisher = {Scuola normale superiore},
title = {Spectral mapping theorem for fractional powers in locally convex spaces},
url = {http://eudml.org/doc/84274},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Martínez, Celso
AU - Sanz, Miguel
TI - Spectral mapping theorem for fractional powers in locally convex spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 4
SP - 685
EP - 702
LA - eng
KW - fractional powers of nonnegative operators; sequentially complete, locally convex spaces; spectral mapping theorem; functional calculus
UR - http://eudml.org/doc/84274
ER -

References

top
  1. [1] A.V. Balakrishnan, Fractional powers of closed operators and semigroups generated by them, Pacific J. Math.10 (1960), 419-437. Zbl0103.33502MR115096
  2. [2] N. Dunford - J.T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publishers, John Wiley & Sons, 1958. Zbl0084.10402MR1009162
  3. [3] F. Hirsch, Intégrales de résolvantes et calcul symbolique, Ann. Inst. Fourier, Grenoble22 (1972), 239-264. Zbl0235.47007MR367716
  4. [4] F. Hirsch, Domaines d'opérateurs représentés comme integrales de résolvantes, J. Funct. Anal.23 (1976), 199-217. Zbl0341.47013MR428105
  5. [5] H. Komatsu, Fractional powers of operators, II. Interpolation spaces, Pacific J. Math.21 (1967),89-111. Zbl0168.10702MR206716
  6. [6] W. Lamb, Fractional powers of operators defined on a Frechet space, Proc. Edinburgh Math. Soc. 27 (1984), 165-181. Zbl0527.47002MR760612
  7. [7] W. Lamb - A.C. Mcbride, On relating two approaches to fractional calculus, J. Math. Anal. Appl.132 (1988), 590-610. Zbl0651.26007MR943531
  8. [8] C. Martínez - M. Sanz, Fractional powers of non-densely defined operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1991), 443-454. Zbl0811.47013MR1145317
  9. [9] C. Martínez - M. Sanz - V. Calvo, Fractional powers of non-negative operators in Fréchet spaces, Internat. J. Math. Math. Sci.12 (1989), 309-320. Zbl0684.47013MR994914
  10. [10] C. Martínez - M. Sanz - L. Marco, Fractional powers of operators, J. Math. Soc. Japan40 (1988), 331-347. Zbl0628.47006MR930604
  11. [11] C. Martínez - M. Sanz - M.D. Martínez, Some inequalities for fractional integrals and derivatives, Dokl. Akad. Nauk SSSR315 (1990), 1049-1051 (Russian). English translation in Soviet Math. Dokl. 42 (1991), 876-879. Zbl0754.47026MR1100377
  12. [12] C. Martínez - M. Sanz - M.D. Martínez, About Fractional Integrals in the Space of Locally Integrable Functions, J. Math. Anal. Appl.167 (1992), 111-122. Zbl0760.47016MR1165261
  13. [13] S.E. Schiavone - W. Lamb, A fractional power approach to fractional calculus, J. Math. Anal. Appl.149 (1990), 111-122. Zbl0707.47012MR1057681
  14. [14] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970. Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.