Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group
Ewa Damek (1992)
Studia Mathematica
Similarity:
Ewa Damek (1992)
Studia Mathematica
Similarity:
Andrzej Hulanicki, Joe Jenkins (1987)
Studia Mathematica
Similarity:
Ewa Damek, Andrzej Hulanicki (1991)
Studia Mathematica
Similarity:
On the domain S_a = {(x,e^b): x ∈ N, b ∈ ℝ, b > a} where N is a simply connected nilpotent Lie group, a certain N-left-invariant, second order, degenerate elliptic operator L is considered. N × {e^a} is the Poisson boundary for L-harmonic functions F, i.e. F is the Poisson integral F(xe^b) = ʃ_N f(xy)dμ^b_a(x), for an f in L^∞(N). The main theorem of the paper asserts that the maximal function M^a f(x) = sup{|ʃf(xy)dμ_a^b(y)| : b > a} is of weak type (1,1).
Isabeau Birindelli, Jyotshana Prajapat (2001)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
I. Birindelli, I. Capuzzo Dolcetta, A. Cutrì (1997)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Jacek Dziubański, Waldemar Hebisch, Jacek Zienkiewicz (1994)
Studia Mathematica
Similarity:
Let L be a positive Rockland operator of homogeneous degree d on a graded homogeneous group G and let be the convolution kernels of the semigroup generated by L. We prove that if τ(x) is a Riemannian distance of x from the unit element, then there are constants c>0 and C such that . Moreover, if G is not stratified, more precise estimates of at infinity are given.
Bertin Diarra (1995)
Publicacions Matemàtiques
Similarity:
Let L be a Lie algebra over a field K. The dual Lie coalgebra Lº of L has been defined by W. Michaelis to be the sum of all good subspaces V of the dual space L* of L: V is good if m(V) ⊂ V ⊗ V, where m is the multiplication of L. We show that Lº = m(L* ⊗ L*) as in the associative case.