Variational fractals
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 3-4, page 683-712
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMosco, Umberto. "Variational fractals." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 683-712. <http://eudml.org/doc/84310>.
@article{Mosco1997,
author = {Mosco, Umberto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {variational fractal; self-similar set; Hausdorff measure; Hausdorff dimension; Poincaré-type inequalities; Dirichlet form},
language = {eng},
number = {3-4},
pages = {683-712},
publisher = {Scuola normale superiore},
title = {Variational fractals},
url = {http://eudml.org/doc/84310},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Mosco, Umberto
TI - Variational fractals
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 683
EP - 712
LA - eng
KW - variational fractal; self-similar set; Hausdorff measure; Hausdorff dimension; Poincaré-type inequalities; Dirichlet form
UR - http://eudml.org/doc/84310
ER -
References
top- [1] S. Alexander - R. Orbach, Densities of states on fractals: "fractons", J. Physique Lett.43 (1982) L-625.
- [2] M.T. Barlow - R.F. Bass, The construction of Brownian motion on the Sierpinski carpet, Ann. Inst. Henri Poincaré25, 3 (1989), 225-257. Zbl0691.60070MR1023950
- [3] M.T. Barlow - E.A. Perkins, Brownian motion on the Sierpinski gasket, Prob. Theo. Rel. Fields79 (1988), 543-624. Zbl0635.60090MR966175
- [4] M. Biroli - U. Mosco, Formes de Dirichlet et estimations structurelles dans les milieux discontinus, C. R. Acad. Sci. Paris Série I, t. 313 (1991), 593-598. Zbl0760.49004MR1133491
- [5] M. Biroli - U. Mosco, A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (IV) CLXX (1995), 125-181. Zbl0851.31008MR1378473
- [6] M. Biroli - U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Rend. Mat. Acc. Lincei9, 6 (1995), 37-44. Zbl0837.31006MR1340280
- [7] M. Biroli - U. Mosco, Sobolev inequalities for Dirichlet forms on homogeneous spaces, in: "Boundary value problems for partial differential equations and applications ", C. Baiocchi and J. L. Lions (eds.), Research Notes in Appl. Math., Masson, 1993; Sobolev inequalities on homogeneous spaces, Potential Anal.4 (1995), 311-324. Zbl0833.46020MR1260455
- [8] A. Bunde - S. Havlin, Fractals and Disordered Systems, Springer-Verlag, Berlin-Heidelberg, 1991. Zbl0746.58009MR1130617
- [9] E.A. Carlen - S. Kusuoka - D.W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré2 (1987), 245-287. Zbl0634.60066MR898496
- [10] R.R. Coifman - G. Weiss, Analyse harmonique sur certaines éspaces homogenes, Lect. Notes in Math.242, Springer V., Berlin- Heidelberg-New York, 1971. Zbl0224.43006MR499948
- [11] M. Fukushima, Dirichlet forms, diffusion processes and spectral dimension for nested fractals, in "Ideas and Methods in Mathematical Analysis, Stochastics and Applications", S. Albeverio et al. eds., Cambridge Univ. Press, 1992, 151-161. Zbl0764.60081MR1190496
- [12] M. Fukushima - Y. Oshima - M. Takeda, Dirichlet forms and Symmetric Markov Processes, Walter De Gruyter Co., 1995. Zbl0838.31001MR1303354
- [13] M. Fukushima - T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Anal.1 (1992), 1-35. Zbl1081.31501MR1245223
- [14] S. Goldstein, Random walks and diffusions on fractals, in "Percolation theory and ergodic theory of infinite particle systems", Minneapolis, Minn.1984-85, pp. 121-129, IMA Vol. Math. Appl.8, Springer, New York-Berlin- Heidelberg, 1987. Zbl0621.60073MR894545
- [15] J.E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J.30 (1981), 713-747. Zbl0598.28011MR625600
- [16] J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math.6 (1989), 259-290. Zbl0686.31003MR1001286
- [17] S.M. Kozlov, Harmonization and homogenization on fractals, Commun. Math. Phys.153 (1993), 159-339. Zbl0767.58033MR1218305
- [18] S. Kusuoka, A diffusion process on a fractal, in "Probabilistic methods in Mathematical Physics", Proc. of Taniguchi Int. Symp., Katata and Kyoto, 1985, K. Ito and N. Ikeda eds., Kinokuniya, Tokio, 1987, pp. 251-274. Zbl0645.60081MR933827
- [19] S. Kusuoka, Diffusion processes in nested fractals, in "Statistical Mechanics and Fractals" , Lect. Notes in Math. 1567, SpringerV., 1993. Zbl0787.60119
- [20] S. Kusuoka - X.Y. Zhou, Dirichlet forms on fractals: Poincaré constant and resistance, Prob. Th. Rel. Fields93 (1992) 169-196. Zbl0767.60076MR1176724
- [21] T. Lindstrøm, Brownian motion on nested fractals, Memoirs AMS, N.420, 83 (1990). Zbl0688.60065MR988082
- [22] U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal.123, No.2 (1994), 368-421. Zbl0808.46042MR1283033
- [23] U. Mosco, Variational metrics on self-similar fractals, C. R. Acad. Sci. Paris, t. 321, Série I (1995), 715-720. Zbl0898.28003MR1354712
- [24] U. Mosco, Variations and Irregularities, in "Second Topological Analysis Workshop on Degree, Singularities and Variations: Developments of the last 25 Years", M. Matzeu and A. Vignoli eds., Progress in Nonlinear Differential Equations and Their Applications, Vol. 27, Birkhäuser, 1997. Zbl0884.58001MR1453892
- [25] U. Mosco, Lagrangian metrics on fractals, Proc. Conf. on "Recent Advances in Partial Differential Equations" Marking the 70th Birthdays of Peter Lax and Louis Nirenberg, Venezia, 1996; Amer. Math. Soc., Proc. Symp. Appl. Math., Spigler R. and Venakides S. eds., 54 (1998), 301-323. Zbl0898.58021MR1492702
- [26] U. Mosco - L. Notarantonio, Homogeneous fractal spaces, Proc. Conf. on "Irregular variational problems", Como, 1994; Serapioni R. and Tomarelli F. eds, Progress in Nonlinear Differential Equations and Their Applications, Vol. 25, Birkhäuser, 1996. Zbl0877.46028MR1414498
- [27] R. Rammal - G. Toulouse, Random walks on fractal structures and percolation clusters, J. Physique Lettres44 (1983), L13-L22.
- [28] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Intern. Math. Res. Notices (1992), 27-38. Zbl0769.58054MR1150597
- [29] E.M. Stein, Harmonic analysis, Princeton Univ. Series, 1994.
- [30] N. Th. Varopoulos, Sobolev inequalities on Lie groups and symmetric spaces, J. Funct. Anal.86 (1989), 19-40. Zbl0697.22013MR1013932
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.