Variational fractals

Umberto Mosco

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 3-4, page 683-712
  • ISSN: 0391-173X

How to cite

top

Mosco, Umberto. "Variational fractals." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 683-712. <http://eudml.org/doc/84310>.

@article{Mosco1997,
author = {Mosco, Umberto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {variational fractal; self-similar set; Hausdorff measure; Hausdorff dimension; Poincaré-type inequalities; Dirichlet form},
language = {eng},
number = {3-4},
pages = {683-712},
publisher = {Scuola normale superiore},
title = {Variational fractals},
url = {http://eudml.org/doc/84310},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Mosco, Umberto
TI - Variational fractals
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 683
EP - 712
LA - eng
KW - variational fractal; self-similar set; Hausdorff measure; Hausdorff dimension; Poincaré-type inequalities; Dirichlet form
UR - http://eudml.org/doc/84310
ER -

References

top
  1. [1] S. Alexander - R. Orbach, Densities of states on fractals: "fractons", J. Physique Lett.43 (1982) L-625. 
  2. [2] M.T. Barlow - R.F. Bass, The construction of Brownian motion on the Sierpinski carpet, Ann. Inst. Henri Poincaré25, 3 (1989), 225-257. Zbl0691.60070MR1023950
  3. [3] M.T. Barlow - E.A. Perkins, Brownian motion on the Sierpinski gasket, Prob. Theo. Rel. Fields79 (1988), 543-624. Zbl0635.60090MR966175
  4. [4] M. Biroli - U. Mosco, Formes de Dirichlet et estimations structurelles dans les milieux discontinus, C. R. Acad. Sci. Paris Série I, t. 313 (1991), 593-598. Zbl0760.49004MR1133491
  5. [5] M. Biroli - U. Mosco, A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (IV) CLXX (1995), 125-181. Zbl0851.31008MR1378473
  6. [6] M. Biroli - U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Rend. Mat. Acc. Lincei9, 6 (1995), 37-44. Zbl0837.31006MR1340280
  7. [7] M. Biroli - U. Mosco, Sobolev inequalities for Dirichlet forms on homogeneous spaces, in: "Boundary value problems for partial differential equations and applications ", C. Baiocchi and J. L. Lions (eds.), Research Notes in Appl. Math., Masson, 1993; Sobolev inequalities on homogeneous spaces, Potential Anal.4 (1995), 311-324. Zbl0833.46020MR1260455
  8. [8] A. Bunde - S. Havlin, Fractals and Disordered Systems, Springer-Verlag, Berlin-Heidelberg, 1991. Zbl0746.58009MR1130617
  9. [9] E.A. Carlen - S. Kusuoka - D.W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré2 (1987), 245-287. Zbl0634.60066MR898496
  10. [10] R.R. Coifman - G. Weiss, Analyse harmonique sur certaines éspaces homogenes, Lect. Notes in Math.242, Springer V., Berlin- Heidelberg-New York, 1971. Zbl0224.43006MR499948
  11. [11] M. Fukushima, Dirichlet forms, diffusion processes and spectral dimension for nested fractals, in "Ideas and Methods in Mathematical Analysis, Stochastics and Applications", S. Albeverio et al. eds., Cambridge Univ. Press, 1992, 151-161. Zbl0764.60081MR1190496
  12. [12] M. Fukushima - Y. Oshima - M. Takeda, Dirichlet forms and Symmetric Markov Processes, Walter De Gruyter Co., 1995. Zbl0838.31001MR1303354
  13. [13] M. Fukushima - T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Anal.1 (1992), 1-35. Zbl1081.31501MR1245223
  14. [14] S. Goldstein, Random walks and diffusions on fractals, in "Percolation theory and ergodic theory of infinite particle systems", Minneapolis, Minn.1984-85, pp. 121-129, IMA Vol. Math. Appl.8, Springer, New York-Berlin- Heidelberg, 1987. Zbl0621.60073MR894545
  15. [15] J.E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J.30 (1981), 713-747. Zbl0598.28011MR625600
  16. [16] J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math.6 (1989), 259-290. Zbl0686.31003MR1001286
  17. [17] S.M. Kozlov, Harmonization and homogenization on fractals, Commun. Math. Phys.153 (1993), 159-339. Zbl0767.58033MR1218305
  18. [18] S. Kusuoka, A diffusion process on a fractal, in "Probabilistic methods in Mathematical Physics", Proc. of Taniguchi Int. Symp., Katata and Kyoto, 1985, K. Ito and N. Ikeda eds., Kinokuniya, Tokio, 1987, pp. 251-274. Zbl0645.60081MR933827
  19. [19] S. Kusuoka, Diffusion processes in nested fractals, in "Statistical Mechanics and Fractals" , Lect. Notes in Math. 1567, SpringerV., 1993. Zbl0787.60119
  20. [20] S. Kusuoka - X.Y. Zhou, Dirichlet forms on fractals: Poincaré constant and resistance, Prob. Th. Rel. Fields93 (1992) 169-196. Zbl0767.60076MR1176724
  21. [21] T. Lindstrøm, Brownian motion on nested fractals, Memoirs AMS, N.420, 83 (1990). Zbl0688.60065MR988082
  22. [22] U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal.123, No.2 (1994), 368-421. Zbl0808.46042MR1283033
  23. [23] U. Mosco, Variational metrics on self-similar fractals, C. R. Acad. Sci. Paris, t. 321, Série I (1995), 715-720. Zbl0898.28003MR1354712
  24. [24] U. Mosco, Variations and Irregularities, in "Second Topological Analysis Workshop on Degree, Singularities and Variations: Developments of the last 25 Years", M. Matzeu and A. Vignoli eds., Progress in Nonlinear Differential Equations and Their Applications, Vol. 27, Birkhäuser, 1997. Zbl0884.58001MR1453892
  25. [25] U. Mosco, Lagrangian metrics on fractals, Proc. Conf. on "Recent Advances in Partial Differential Equations" Marking the 70th Birthdays of Peter Lax and Louis Nirenberg, Venezia, 1996; Amer. Math. Soc., Proc. Symp. Appl. Math., Spigler R. and Venakides S. eds., 54 (1998), 301-323. Zbl0898.58021MR1492702
  26. [26] U. Mosco - L. Notarantonio, Homogeneous fractal spaces, Proc. Conf. on "Irregular variational problems", Como, 1994; Serapioni R. and Tomarelli F. eds, Progress in Nonlinear Differential Equations and Their Applications, Vol. 25, Birkhäuser, 1996. Zbl0877.46028MR1414498
  27. [27] R. Rammal - G. Toulouse, Random walks on fractal structures and percolation clusters, J. Physique Lettres44 (1983), L13-L22. 
  28. [28] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Intern. Math. Res. Notices (1992), 27-38. Zbl0769.58054MR1150597
  29. [29] E.M. Stein, Harmonic analysis, Princeton Univ. Series, 1994. 
  30. [30] N. Th. Varopoulos, Sobolev inequalities on Lie groups and symmetric spaces, J. Funct. Anal.86 (1989), 19-40. Zbl0697.22013MR1013932

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.