Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces

Marco Biroli; Umberto Mosco

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1995)

  • Volume: 6, Issue: 1, page 37-44
  • ISSN: 1120-6330

Abstract

top
We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.

How to cite

top

Biroli, Marco, and Mosco, Umberto. "Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.1 (1995): 37-44. <http://eudml.org/doc/244300>.

@article{Biroli1995,
abstract = {We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.},
author = {Biroli, Marco, Mosco, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Sobolev spaces; Dirichlet forms; Degenerate elliptic operators; BV spaces; homogeneous space; degenerate elliptic operators; Sierpinski gasket; Dirichlet operators; local embedding theorems},
language = {eng},
month = {3},
number = {1},
pages = {37-44},
publisher = {Accademia Nazionale dei Lincei},
title = {Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces},
url = {http://eudml.org/doc/244300},
volume = {6},
year = {1995},
}

TY - JOUR
AU - Biroli, Marco
AU - Mosco, Umberto
TI - Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/3//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 1
SP - 37
EP - 44
AB - We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.
LA - eng
KW - Sobolev spaces; Dirichlet forms; Degenerate elliptic operators; BV spaces; homogeneous space; degenerate elliptic operators; Sierpinski gasket; Dirichlet operators; local embedding theorems
UR - http://eudml.org/doc/244300
ER -

References

top
  1. BIROLI, M. - MOSCO, U., Formes de Dirichlet et estimations structurelles dans les milieux discontinus. C.R. Acad. Sci. Paris, Série I, 313, 1991, 593-598. Zbl0760.49004MR1133491
  2. BIROLI, M. - MOSCO, U., A Saint-Venant principle for Dirichlet forms on discontinuous media. Preprint Series Univ. Bonn SBF 256 n. 224, 1992; revised Publ. Lab. An. Num. Univ. Paris VI, 1993, Ann. Mat. Pura Appl., in print. Zbl0851.31008
  3. BIROLI, M. - MOSCO, U., Sobolev inequalities for Dirichlet forms on homogeneous spaces. In: C. BAIOCCHI J. L. LIONS (eds.), Boundary Value Problems for Partial Differential Equations and Applications. Research Notes in Applied Mathematics, Masson, 1993. Zbl0820.35035MR1260455
  4. BURGER, N., Espace des fonctions à variation bornée sur un espace de nature homogène. C.R. Acad. Sci. Paris, Série I, 286, 1978, 139-142. Zbl0368.46037MR467176
  5. COIFMAN, R. R. - WEISS, G., Analyse harmonique sur certaines espaces homogènes. Lectures Notes in Mathematics, 242, Springer-Verlag, Berlin-Heidelberg-New York1971. Zbl0224.43006MR499948
  6. COULHON, T., Espaces de Lipschitz et inégalités de Poincaré. To appear. Zbl0859.58009
  7. FABES, E. - KENIG, C. - SERAPIONI, R., The local regularity of solutions of degenerate elliptic equations. Comm. in P.D.E., 7, 1982, 77-116. Zbl0498.35042MR643158DOI10.1080/03605308208820218
  8. FEFFERMAN, C. L. - PHONG, D. H., Subelliptic eigenvalue problems. In: W. BECKNER et al. (eds.), Conference on Harmonic Analysis in Honor of A. Zygmund. Vol. 2, Wadsworth Math. Series, Chicago1983, 590-606. Zbl0503.35071MR730094
  9. FOLLAND, G. B. - STEIN, E. M., Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton1982. Zbl0508.42025MR657581
  10. FRANCHI, B. - LANCONELLI, E., An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality. Comm. in P.D.E., 9, 1984, 1237-1264. Zbl0589.46023MR764663DOI10.1080/03605308408820362
  11. FRANCHI, B. - GALLOT, S. - WHEEDEN, R. L., Inégalités isopérimétriques pour les métriques dégénérées. C.R. Acad. Sci. Paris, Série I, 317, 1993, 651-654. Zbl0794.51011MR1245092
  12. FUKUSHIMA, M., Dirichlet Forms and Markov Processes. North-Holland Math. Library, North-Holland, Amsterdam1980. Zbl0422.31007MR569058
  13. FUKUSHIMA, M. - SHIMA, T., On a spectral analysis for the Sierpinski gasket. Potential An., 1, 1992, 1-35. Zbl1081.31501MR1245223DOI10.1007/BF00249784
  14. JERISON, D., The Poincaré inequalities for vector fields satisfying Hörmander's condition. Duke Math. Jour., 53, 1986, 505-523. Zbl0614.35066
  15. KIGAMI, J., A harmonic calculus on the Sierpinski spaces. Japan Jour. Appl. Math., 6, 1989, 252-290. Zbl0686.31003MR1001286DOI10.1007/BF03167882
  16. KOZLOV, S. M., Harmonization and homogenization on fractals. Comm. Math. Phys., 153, 1993, 339-357. Zbl0767.58033MR1218305
  17. KUSUOKA, S., A diffusion process on fractals. In: K. ITÔ - N. IKEDA (eds.), Proceedings of the Taniguchi Symposium (Katata 1985), North-Holland, Amsterdam1987, 251-274. Zbl0645.60081MR933827
  18. LOHOUÉ, N., Estimées de type Hardy-Sobolev sur certaines variétés riemanniennes et les groupes de Lie. Jour. Func. An., 112, 1993, 121-158. Zbl0773.58003MR1207939DOI10.1006/jfan.1993.1028
  19. LU, G., Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander condition and applications. Riv. Iberoam., 8 (3), 1992, 367-440. Zbl0804.35015MR1202416DOI10.4171/RMI/129
  20. MACIAS, R. M. - SEGOVIA, C., Lipschitz functions on spaces of homogeneous type. Advances in Math., 33, 1979, 257-270. Zbl0431.46018MR546295DOI10.1016/0001-8708(79)90012-4
  21. MOSCO, U. - NOTARANTONIO, L., Homogeneous fractal spaces. To appear. Zbl0877.46028MR1414498
  22. NAGEL, A. - STEIN, E. M. - WAINGER, S., Balls and metrics defined by vector fields I: Basic properties. Acta Math., 155, 1985, 103-147. Zbl0578.32044MR793239DOI10.1007/BF02392539
  23. SALOFF-COSTE, L., Uniformly elliptic operators on Riemannian manifolds. Jour. Diff. Geom., 36, 1992, 417-450. Zbl0735.58032MR1180389
  24. VAROPOULOS, N. TH., Sobolev inequalities on Lie groups and symmetric spaces. Jour. Func. An., 86, 1989, 19-40. Zbl0697.22013MR1013932DOI10.1016/0022-1236(89)90063-3

Citations in EuDML Documents

top
  1. Umberto Mosco, Variational fractals
  2. Bruno Franchi, Guozhen Lu, Richard L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields
  3. Bernd Kirchheim, Francesco Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group
  4. Ermanno Lanconelli, Strutture subriemanniane in alcuni problemi di Analisi
  5. Franchi, Bruno, B V spaces and rectifiability for Carnot-Carathéodory metrics: an introduction
  6. Donatella Danielli, Nicola Garofalo, Duy-Minh Nhieu, Trace inequalities for Carnot-Carathéodory spaces and applications

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.