Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces
- Volume: 6, Issue: 1, page 37-44
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBiroli, Marco, and Mosco, Umberto. "Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.1 (1995): 37-44. <http://eudml.org/doc/244300>.
@article{Biroli1995,
abstract = {We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.},
author = {Biroli, Marco, Mosco, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Sobolev spaces; Dirichlet forms; Degenerate elliptic operators; BV spaces; homogeneous space; degenerate elliptic operators; Sierpinski gasket; Dirichlet operators; local embedding theorems},
language = {eng},
month = {3},
number = {1},
pages = {37-44},
publisher = {Accademia Nazionale dei Lincei},
title = {Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces},
url = {http://eudml.org/doc/244300},
volume = {6},
year = {1995},
}
TY - JOUR
AU - Biroli, Marco
AU - Mosco, Umberto
TI - Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/3//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 1
SP - 37
EP - 44
AB - We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.
LA - eng
KW - Sobolev spaces; Dirichlet forms; Degenerate elliptic operators; BV spaces; homogeneous space; degenerate elliptic operators; Sierpinski gasket; Dirichlet operators; local embedding theorems
UR - http://eudml.org/doc/244300
ER -
References
top- BIROLI, M. - MOSCO, U., Formes de Dirichlet et estimations structurelles dans les milieux discontinus. C.R. Acad. Sci. Paris, Série I, 313, 1991, 593-598. Zbl0760.49004MR1133491
- BIROLI, M. - MOSCO, U., A Saint-Venant principle for Dirichlet forms on discontinuous media. Preprint Series Univ. Bonn SBF 256 n. 224, 1992; revised Publ. Lab. An. Num. Univ. Paris VI, 1993, Ann. Mat. Pura Appl., in print. Zbl0851.31008
- BIROLI, M. - MOSCO, U., Sobolev inequalities for Dirichlet forms on homogeneous spaces. In: C. BAIOCCHI J. L. LIONS (eds.), Boundary Value Problems for Partial Differential Equations and Applications. Research Notes in Applied Mathematics, Masson, 1993. Zbl0820.35035MR1260455
- BURGER, N., Espace des fonctions à variation bornée sur un espace de nature homogène. C.R. Acad. Sci. Paris, Série I, 286, 1978, 139-142. Zbl0368.46037MR467176
- COIFMAN, R. R. - WEISS, G., Analyse harmonique sur certaines espaces homogènes. Lectures Notes in Mathematics, 242, Springer-Verlag, Berlin-Heidelberg-New York1971. Zbl0224.43006MR499948
- COULHON, T., Espaces de Lipschitz et inégalités de Poincaré. To appear. Zbl0859.58009
- FABES, E. - KENIG, C. - SERAPIONI, R., The local regularity of solutions of degenerate elliptic equations. Comm. in P.D.E., 7, 1982, 77-116. Zbl0498.35042MR643158DOI10.1080/03605308208820218
- FEFFERMAN, C. L. - PHONG, D. H., Subelliptic eigenvalue problems. In: W. BECKNER et al. (eds.), Conference on Harmonic Analysis in Honor of A. Zygmund. Vol. 2, Wadsworth Math. Series, Chicago1983, 590-606. Zbl0503.35071MR730094
- FOLLAND, G. B. - STEIN, E. M., Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton1982. Zbl0508.42025MR657581
- FRANCHI, B. - LANCONELLI, E., An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality. Comm. in P.D.E., 9, 1984, 1237-1264. Zbl0589.46023MR764663DOI10.1080/03605308408820362
- FRANCHI, B. - GALLOT, S. - WHEEDEN, R. L., Inégalités isopérimétriques pour les métriques dégénérées. C.R. Acad. Sci. Paris, Série I, 317, 1993, 651-654. Zbl0794.51011MR1245092
- FUKUSHIMA, M., Dirichlet Forms and Markov Processes. North-Holland Math. Library, North-Holland, Amsterdam1980. Zbl0422.31007MR569058
- FUKUSHIMA, M. - SHIMA, T., On a spectral analysis for the Sierpinski gasket. Potential An., 1, 1992, 1-35. Zbl1081.31501MR1245223DOI10.1007/BF00249784
- JERISON, D., The Poincaré inequalities for vector fields satisfying Hörmander's condition. Duke Math. Jour., 53, 1986, 505-523. Zbl0614.35066
- KIGAMI, J., A harmonic calculus on the Sierpinski spaces. Japan Jour. Appl. Math., 6, 1989, 252-290. Zbl0686.31003MR1001286DOI10.1007/BF03167882
- KOZLOV, S. M., Harmonization and homogenization on fractals. Comm. Math. Phys., 153, 1993, 339-357. Zbl0767.58033MR1218305
- KUSUOKA, S., A diffusion process on fractals. In: K. ITÔ - N. IKEDA (eds.), Proceedings of the Taniguchi Symposium (Katata 1985), North-Holland, Amsterdam1987, 251-274. Zbl0645.60081MR933827
- LOHOUÉ, N., Estimées de type Hardy-Sobolev sur certaines variétés riemanniennes et les groupes de Lie. Jour. Func. An., 112, 1993, 121-158. Zbl0773.58003MR1207939DOI10.1006/jfan.1993.1028
- LU, G., Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander condition and applications. Riv. Iberoam., 8 (3), 1992, 367-440. Zbl0804.35015MR1202416DOI10.4171/RMI/129
- MACIAS, R. M. - SEGOVIA, C., Lipschitz functions on spaces of homogeneous type. Advances in Math., 33, 1979, 257-270. Zbl0431.46018MR546295DOI10.1016/0001-8708(79)90012-4
- MOSCO, U. - NOTARANTONIO, L., Homogeneous fractal spaces. To appear. Zbl0877.46028MR1414498
- NAGEL, A. - STEIN, E. M. - WAINGER, S., Balls and metrics defined by vector fields I: Basic properties. Acta Math., 155, 1985, 103-147. Zbl0578.32044MR793239DOI10.1007/BF02392539
- SALOFF-COSTE, L., Uniformly elliptic operators on Riemannian manifolds. Jour. Diff. Geom., 36, 1992, 417-450. Zbl0735.58032MR1180389
- VAROPOULOS, N. TH., Sobolev inequalities on Lie groups and symmetric spaces. Jour. Func. An., 86, 1989, 19-40. Zbl0697.22013MR1013932DOI10.1016/0022-1236(89)90063-3
Citations in EuDML Documents
top- Umberto Mosco, Variational fractals
- Bruno Franchi, Guozhen Lu, Richard L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields
- Bernd Kirchheim, Francesco Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group
- Ermanno Lanconelli, Strutture subriemanniane in alcuni problemi di Analisi
- Franchi, Bruno, spaces and rectifiability for Carnot-Carathéodory metrics: an introduction
- Donatella Danielli, Nicola Garofalo, Duy-Minh Nhieu, Trace inequalities for Carnot-Carathéodory spaces and applications
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.